
Show that the function $f:R \to R$ is defined by $f\left( x \right) = \dfrac{x}{{{x^2} + 1}}$, $\forall x \in R$ is neither one-one nor onto. Also, if $g:R \to R$ is defined as $g\left( x \right) = 2x - 1$, find $fog\left( x \right).$
Answer
581.7k+ views
Hint: A function $f:X \to Y$ is defined to be one-one, if the images of distinct elements of $X$ under $f$ are distinct, i.e., for every ${x_1},{x_2} \in X$, $f\left( {{x_1}} \right) = f\left( {{x_2}} \right)$ implies ${x_1} = {x_2}$. Otherwise, f is not one-one. Also, a function $f:X \to Y$ is onto only if the range of $f = Y$.
Complete step-by-step answer:
Given, $f:R \to R$ is defined by $f\left( x \right) = \dfrac{x}{{{x^2} + 1}}$, $\forall x \in R$
$\left( 1 \right)$$f$ is not one-one: Let ${x_1},{x_2} \in R$ (domain) and $f\left( {{x_1}} \right) = f\left( {{x_2}} \right)$
$ \Rightarrow \dfrac{{{x_1}}}{{{x_1}^2 + 1}} = \dfrac{{{x_2}}}{{{x_2}^2 + 1}}$
$ \Rightarrow {x_1}\left( {{x_2}^2 + 1} \right) = {x_2}\left( {{x_1}^2 + 1} \right)$
$ \Rightarrow {x_1} + {x_1} \cdot {x_2}^2 = {x_2} + {x_2} \cdot {x_1}^2$
$ \Rightarrow {x_1} + {x_1} \cdot {x_2}^2 - {x_2} - {x_2} \cdot {x_1}^2 = 0$
$ \Rightarrow \left( {{x_1} - {x_2}} \right) - {x_1}{x_2}\left( {{x_1} - {x_2}} \right) = 0$
$ \Rightarrow \left( {{x_1} - {x_2}} \right)\left( {1 - {x_1}{x_2}} \right) = 0$
$ \Rightarrow {x_1} = {x_2}$ or ${x_1}{x_2} = 1$
We note that there are points , ${x_1}$ and ${x_2}$ with ${x_1} \ne {x_2}$ and $f\left( {{x_1}} \right) = f\left( {{x_2}} \right)$. For instance, if we take ${x_1} = 1$ and ${x_2} = \dfrac{1}{2}$, then we have $f\left( {{x_1}} \right) = \dfrac{2}{5}$ and $f\left( {{x_2}} \right) = \dfrac{2}{5}$, but $2 \ne \dfrac{1}{2}$. Hence $f$ is not one-one.
(2) $f$ is not onto: Let $y \in R$(Co-domain)
$f\left( x \right) = y$
$ \Rightarrow \dfrac{x}{{1 + {x^2}}} = y$
$ \Rightarrow y\left( {1 + {x^2}} \right) = x$
$ \Rightarrow y{x^2} - x + y = 0$
This is the quadratic equation in variable $x$, whose solution can be find by the formula:
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Here, $a = y,b = - 1,c = y$
$\therefore x = \dfrac{{ - 1 \pm \sqrt {{{\left( 1 \right)}^2} - 4 \cdot y \cdot y} }}{{2y}}$
$ \Rightarrow x = \dfrac{{ - 1 \pm \sqrt {1 - 4{y^2}} }}{{2y}}$
Since $x \in R$, $\therefore 1 - 4{y^2} \geqslant 0$
$ \Rightarrow \left( {1 + 2y} \right)\left( {1 - 2y} \right) = 0$
$ \Rightarrow \dfrac{{ - 1}}{2} \leqslant y \leqslant \dfrac{1}{2}$
So $Range\left( f \right) \in \left[ {\dfrac{{ - 1}}{2},\dfrac{1}{2}} \right]$
Since, $Range\left( f \right) \ne R\left( {Co - domain} \right)$
$\therefore f$ is not onto.
Hence $f$ is neither one-one nor onto.
Given, $f\left( x \right) = \dfrac{x}{{{x^2} + 1}}$ and $g\left( x \right) = 2x - 1$
Now, $fog\left( x \right) = f\left[ {g\left( x \right)} \right]$
$ \Rightarrow fog\left( x \right) = f\left( {2x - 1} \right)$
$ \Rightarrow fog\left( x \right) = \dfrac{{2x - 1}}{{{{\left( {2x - 1} \right)}^2} + 1}}$
$ \Rightarrow fog\left( x \right) = \dfrac{{2x - 1}}{{4{x^2} + 1 - 4x + 1}}$
$ \Rightarrow fog\left( x \right) = \dfrac{{2x - 1}}{{4{x^2} - 4x + 2}}$
The value of $fog\left( x \right) is \dfrac{{2x - 1}}{{4{x^2} - 4x + 2}}$
Note: Given two functions $f$ and $g$, then $fog\left( x \right) = f\left[ {g\left( x \right)} \right]$ is known as composite function because it is the composition of $f$ and $g$. Note that the domain of $fog$ is the set of all real numbers $x$.
Complete step-by-step answer:
Given, $f:R \to R$ is defined by $f\left( x \right) = \dfrac{x}{{{x^2} + 1}}$, $\forall x \in R$
$\left( 1 \right)$$f$ is not one-one: Let ${x_1},{x_2} \in R$ (domain) and $f\left( {{x_1}} \right) = f\left( {{x_2}} \right)$
$ \Rightarrow \dfrac{{{x_1}}}{{{x_1}^2 + 1}} = \dfrac{{{x_2}}}{{{x_2}^2 + 1}}$
$ \Rightarrow {x_1}\left( {{x_2}^2 + 1} \right) = {x_2}\left( {{x_1}^2 + 1} \right)$
$ \Rightarrow {x_1} + {x_1} \cdot {x_2}^2 = {x_2} + {x_2} \cdot {x_1}^2$
$ \Rightarrow {x_1} + {x_1} \cdot {x_2}^2 - {x_2} - {x_2} \cdot {x_1}^2 = 0$
$ \Rightarrow \left( {{x_1} - {x_2}} \right) - {x_1}{x_2}\left( {{x_1} - {x_2}} \right) = 0$
$ \Rightarrow \left( {{x_1} - {x_2}} \right)\left( {1 - {x_1}{x_2}} \right) = 0$
$ \Rightarrow {x_1} = {x_2}$ or ${x_1}{x_2} = 1$
We note that there are points , ${x_1}$ and ${x_2}$ with ${x_1} \ne {x_2}$ and $f\left( {{x_1}} \right) = f\left( {{x_2}} \right)$. For instance, if we take ${x_1} = 1$ and ${x_2} = \dfrac{1}{2}$, then we have $f\left( {{x_1}} \right) = \dfrac{2}{5}$ and $f\left( {{x_2}} \right) = \dfrac{2}{5}$, but $2 \ne \dfrac{1}{2}$. Hence $f$ is not one-one.
(2) $f$ is not onto: Let $y \in R$(Co-domain)
$f\left( x \right) = y$
$ \Rightarrow \dfrac{x}{{1 + {x^2}}} = y$
$ \Rightarrow y\left( {1 + {x^2}} \right) = x$
$ \Rightarrow y{x^2} - x + y = 0$
This is the quadratic equation in variable $x$, whose solution can be find by the formula:
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Here, $a = y,b = - 1,c = y$
$\therefore x = \dfrac{{ - 1 \pm \sqrt {{{\left( 1 \right)}^2} - 4 \cdot y \cdot y} }}{{2y}}$
$ \Rightarrow x = \dfrac{{ - 1 \pm \sqrt {1 - 4{y^2}} }}{{2y}}$
Since $x \in R$, $\therefore 1 - 4{y^2} \geqslant 0$
$ \Rightarrow \left( {1 + 2y} \right)\left( {1 - 2y} \right) = 0$
$ \Rightarrow \dfrac{{ - 1}}{2} \leqslant y \leqslant \dfrac{1}{2}$
So $Range\left( f \right) \in \left[ {\dfrac{{ - 1}}{2},\dfrac{1}{2}} \right]$
Since, $Range\left( f \right) \ne R\left( {Co - domain} \right)$
$\therefore f$ is not onto.
Hence $f$ is neither one-one nor onto.
Given, $f\left( x \right) = \dfrac{x}{{{x^2} + 1}}$ and $g\left( x \right) = 2x - 1$
Now, $fog\left( x \right) = f\left[ {g\left( x \right)} \right]$
$ \Rightarrow fog\left( x \right) = f\left( {2x - 1} \right)$
$ \Rightarrow fog\left( x \right) = \dfrac{{2x - 1}}{{{{\left( {2x - 1} \right)}^2} + 1}}$
$ \Rightarrow fog\left( x \right) = \dfrac{{2x - 1}}{{4{x^2} + 1 - 4x + 1}}$
$ \Rightarrow fog\left( x \right) = \dfrac{{2x - 1}}{{4{x^2} - 4x + 2}}$
The value of $fog\left( x \right) is \dfrac{{2x - 1}}{{4{x^2} - 4x + 2}}$
Note: Given two functions $f$ and $g$, then $fog\left( x \right) = f\left[ {g\left( x \right)} \right]$ is known as composite function because it is the composition of $f$ and $g$. Note that the domain of $fog$ is the set of all real numbers $x$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

