
Show that the function $f:R \to R$ is defined by $f\left( x \right) = \dfrac{x}{{{x^2} + 1}}$, $\forall x \in R$ is neither one-one nor onto. Also, if $g:R \to R$ is defined as $g\left( x \right) = 2x - 1$, find $fog\left( x \right).$
Answer
485.7k+ views
Hint: A function $f:X \to Y$ is defined to be one-one, if the images of distinct elements of $X$ under $f$ are distinct, i.e., for every ${x_1},{x_2} \in X$, $f\left( {{x_1}} \right) = f\left( {{x_2}} \right)$ implies ${x_1} = {x_2}$. Otherwise, f is not one-one. Also, a function $f:X \to Y$ is onto only if the range of $f = Y$.
Complete step-by-step answer:
Given, $f:R \to R$ is defined by $f\left( x \right) = \dfrac{x}{{{x^2} + 1}}$, $\forall x \in R$
$\left( 1 \right)$$f$ is not one-one: Let ${x_1},{x_2} \in R$ (domain) and $f\left( {{x_1}} \right) = f\left( {{x_2}} \right)$
$ \Rightarrow \dfrac{{{x_1}}}{{{x_1}^2 + 1}} = \dfrac{{{x_2}}}{{{x_2}^2 + 1}}$
$ \Rightarrow {x_1}\left( {{x_2}^2 + 1} \right) = {x_2}\left( {{x_1}^2 + 1} \right)$
$ \Rightarrow {x_1} + {x_1} \cdot {x_2}^2 = {x_2} + {x_2} \cdot {x_1}^2$
$ \Rightarrow {x_1} + {x_1} \cdot {x_2}^2 - {x_2} - {x_2} \cdot {x_1}^2 = 0$
$ \Rightarrow \left( {{x_1} - {x_2}} \right) - {x_1}{x_2}\left( {{x_1} - {x_2}} \right) = 0$
$ \Rightarrow \left( {{x_1} - {x_2}} \right)\left( {1 - {x_1}{x_2}} \right) = 0$
$ \Rightarrow {x_1} = {x_2}$ or ${x_1}{x_2} = 1$
We note that there are points , ${x_1}$ and ${x_2}$ with ${x_1} \ne {x_2}$ and $f\left( {{x_1}} \right) = f\left( {{x_2}} \right)$. For instance, if we take ${x_1} = 1$ and ${x_2} = \dfrac{1}{2}$, then we have $f\left( {{x_1}} \right) = \dfrac{2}{5}$ and $f\left( {{x_2}} \right) = \dfrac{2}{5}$, but $2 \ne \dfrac{1}{2}$. Hence $f$ is not one-one.
(2) $f$ is not onto: Let $y \in R$(Co-domain)
$f\left( x \right) = y$
$ \Rightarrow \dfrac{x}{{1 + {x^2}}} = y$
$ \Rightarrow y\left( {1 + {x^2}} \right) = x$
$ \Rightarrow y{x^2} - x + y = 0$
This is the quadratic equation in variable $x$, whose solution can be find by the formula:
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Here, $a = y,b = - 1,c = y$
$\therefore x = \dfrac{{ - 1 \pm \sqrt {{{\left( 1 \right)}^2} - 4 \cdot y \cdot y} }}{{2y}}$
$ \Rightarrow x = \dfrac{{ - 1 \pm \sqrt {1 - 4{y^2}} }}{{2y}}$
Since $x \in R$, $\therefore 1 - 4{y^2} \geqslant 0$
$ \Rightarrow \left( {1 + 2y} \right)\left( {1 - 2y} \right) = 0$
$ \Rightarrow \dfrac{{ - 1}}{2} \leqslant y \leqslant \dfrac{1}{2}$
So $Range\left( f \right) \in \left[ {\dfrac{{ - 1}}{2},\dfrac{1}{2}} \right]$
Since, $Range\left( f \right) \ne R\left( {Co - domain} \right)$
$\therefore f$ is not onto.
Hence $f$ is neither one-one nor onto.
Given, $f\left( x \right) = \dfrac{x}{{{x^2} + 1}}$ and $g\left( x \right) = 2x - 1$
Now, $fog\left( x \right) = f\left[ {g\left( x \right)} \right]$
$ \Rightarrow fog\left( x \right) = f\left( {2x - 1} \right)$
$ \Rightarrow fog\left( x \right) = \dfrac{{2x - 1}}{{{{\left( {2x - 1} \right)}^2} + 1}}$
$ \Rightarrow fog\left( x \right) = \dfrac{{2x - 1}}{{4{x^2} + 1 - 4x + 1}}$
$ \Rightarrow fog\left( x \right) = \dfrac{{2x - 1}}{{4{x^2} - 4x + 2}}$
The value of $fog\left( x \right) is \dfrac{{2x - 1}}{{4{x^2} - 4x + 2}}$
Note: Given two functions $f$ and $g$, then $fog\left( x \right) = f\left[ {g\left( x \right)} \right]$ is known as composite function because it is the composition of $f$ and $g$. Note that the domain of $fog$ is the set of all real numbers $x$.
Complete step-by-step answer:
Given, $f:R \to R$ is defined by $f\left( x \right) = \dfrac{x}{{{x^2} + 1}}$, $\forall x \in R$
$\left( 1 \right)$$f$ is not one-one: Let ${x_1},{x_2} \in R$ (domain) and $f\left( {{x_1}} \right) = f\left( {{x_2}} \right)$
$ \Rightarrow \dfrac{{{x_1}}}{{{x_1}^2 + 1}} = \dfrac{{{x_2}}}{{{x_2}^2 + 1}}$
$ \Rightarrow {x_1}\left( {{x_2}^2 + 1} \right) = {x_2}\left( {{x_1}^2 + 1} \right)$
$ \Rightarrow {x_1} + {x_1} \cdot {x_2}^2 = {x_2} + {x_2} \cdot {x_1}^2$
$ \Rightarrow {x_1} + {x_1} \cdot {x_2}^2 - {x_2} - {x_2} \cdot {x_1}^2 = 0$
$ \Rightarrow \left( {{x_1} - {x_2}} \right) - {x_1}{x_2}\left( {{x_1} - {x_2}} \right) = 0$
$ \Rightarrow \left( {{x_1} - {x_2}} \right)\left( {1 - {x_1}{x_2}} \right) = 0$
$ \Rightarrow {x_1} = {x_2}$ or ${x_1}{x_2} = 1$
We note that there are points , ${x_1}$ and ${x_2}$ with ${x_1} \ne {x_2}$ and $f\left( {{x_1}} \right) = f\left( {{x_2}} \right)$. For instance, if we take ${x_1} = 1$ and ${x_2} = \dfrac{1}{2}$, then we have $f\left( {{x_1}} \right) = \dfrac{2}{5}$ and $f\left( {{x_2}} \right) = \dfrac{2}{5}$, but $2 \ne \dfrac{1}{2}$. Hence $f$ is not one-one.
(2) $f$ is not onto: Let $y \in R$(Co-domain)
$f\left( x \right) = y$
$ \Rightarrow \dfrac{x}{{1 + {x^2}}} = y$
$ \Rightarrow y\left( {1 + {x^2}} \right) = x$
$ \Rightarrow y{x^2} - x + y = 0$
This is the quadratic equation in variable $x$, whose solution can be find by the formula:
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Here, $a = y,b = - 1,c = y$
$\therefore x = \dfrac{{ - 1 \pm \sqrt {{{\left( 1 \right)}^2} - 4 \cdot y \cdot y} }}{{2y}}$
$ \Rightarrow x = \dfrac{{ - 1 \pm \sqrt {1 - 4{y^2}} }}{{2y}}$
Since $x \in R$, $\therefore 1 - 4{y^2} \geqslant 0$
$ \Rightarrow \left( {1 + 2y} \right)\left( {1 - 2y} \right) = 0$
$ \Rightarrow \dfrac{{ - 1}}{2} \leqslant y \leqslant \dfrac{1}{2}$
So $Range\left( f \right) \in \left[ {\dfrac{{ - 1}}{2},\dfrac{1}{2}} \right]$
Since, $Range\left( f \right) \ne R\left( {Co - domain} \right)$
$\therefore f$ is not onto.
Hence $f$ is neither one-one nor onto.
Given, $f\left( x \right) = \dfrac{x}{{{x^2} + 1}}$ and $g\left( x \right) = 2x - 1$
Now, $fog\left( x \right) = f\left[ {g\left( x \right)} \right]$
$ \Rightarrow fog\left( x \right) = f\left( {2x - 1} \right)$
$ \Rightarrow fog\left( x \right) = \dfrac{{2x - 1}}{{{{\left( {2x - 1} \right)}^2} + 1}}$
$ \Rightarrow fog\left( x \right) = \dfrac{{2x - 1}}{{4{x^2} + 1 - 4x + 1}}$
$ \Rightarrow fog\left( x \right) = \dfrac{{2x - 1}}{{4{x^2} - 4x + 2}}$
The value of $fog\left( x \right) is \dfrac{{2x - 1}}{{4{x^2} - 4x + 2}}$
Note: Given two functions $f$ and $g$, then $fog\left( x \right) = f\left[ {g\left( x \right)} \right]$ is known as composite function because it is the composition of $f$ and $g$. Note that the domain of $fog$ is the set of all real numbers $x$.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

Most of the Sinhalaspeaking people in Sri Lanka are class 12 social science CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

What I want should not be confused with total inactivity class 12 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
