
Show that the differential equation $\left( x{{e}^{\dfrac{x}{y}}}+y \right)dx=xdy$ is homogeneous. Find the particular solution of this differential equation given that $x=1$ and $y=1$?
Answer
577.8k+ views
Hint: We start solving the problem by recalling the definition of homogeneous function. We substitute $\left( mx,my \right)$ in place of $\left( x,y \right)$ in the differential equation to prove the homogeneity. We substitute $y=vx$ in the differential equation to solve it. We convert the differential equation in terms of v and x to find the general solution of the differential equation. We substitute the given values in the general solution to find the desired particular solution.
Complete step-by-step answer:
According to the problem, we have a differential equation $\left( x{{e}^{\dfrac{x}{y}}}+y \right)dx=xdy$. We need to prove that the given differential equation is homogeneous and we need to find the particular solution of this differential equation at $x=1$, $y=1$.
Let us assume $f\left( x,y \right)=\left( x{{e}^{\dfrac{x}{y}}}+y \right)dx-xdy$ ---(1).
We know that for a function $f\left( x,y \right)$ said to be homogeneous, it should satisfy the condition $f\left( mx,my \right)={{m}^{n}}.f\left( x,y \right)$. Let us verify this for the function in equation (1).
We substitute $\left( mx,my \right)$ in place of $\left( x,y \right)$ in equation (1).
$\Rightarrow f\left( mx,my \right)=\left( \left( mx \right).{{e}^{\dfrac{mx}{my}}}+my \right)d\left( mx \right)-\left( mx \right)d\left( my \right)$.
$\Rightarrow f\left( mx,my \right)=\left( \left( mx \right).{{e}^{\dfrac{x}{y}}}+my \right).mdx-\left( mx \right).mdy$
$\Rightarrow f\left( mx,my \right)={{m}^{2}}.\left( \left( x{{e}^{\dfrac{x}{y}}}+y \right)dx-xdy \right)$.
$\Rightarrow f\left( mx,my \right)={{m}^{2}}.f\left( x,y \right)$ ---(2).
So, we can see that the function $f\left( x,y \right)$ satisfies the condition $f\left( mx,my \right)={{m}^{n}}.f\left( x,y \right)$ of being homogeneous. So, the differential equation $\left( x{{e}^{\dfrac{x}{y}}}+y \right)dx=xdy$ is homogeneous.
Now, we find the general solution for the given differential equation $\left( x{{e}^{\dfrac{x}{y}}}+y \right)dx=xdy$ to find the particular solution at $x=1$, $y=\dfrac{\pi }{2}$.
$\Rightarrow \left( x{{e}^{\dfrac{x}{y}}}+y \right)dx=xdy$.
$\Rightarrow \dfrac{\left( x{{e}^{\dfrac{x}{y}}}+y \right)}{x}=\dfrac{dy}{dx}$.
$\Rightarrow \dfrac{x{{e}^{\dfrac{x}{y}}}}{x}+\dfrac{y}{x}=\dfrac{dy}{dx}$.
$\Rightarrow {{e}^{\dfrac{x}{y}}}+\dfrac{y}{x}=\dfrac{dy}{dx}$ ---(3).
We know that the homogeneous differential equations of the form \[\dfrac{dy}{dx}=f\left( \dfrac{y}{x} \right)\] are solved by substituting $y=vx$ ---(4).
We have $y=vx$. So, we get $v=\dfrac{y}{x}$.
We differentiate with respect to ‘x’ on both sides,
$\Rightarrow \dfrac{dy}{dx}=\dfrac{d}{dx}\left( vx \right)$.
We know that the differentiation of the function of form ‘uv’ is performed as $\dfrac{d}{dx}\left( uv \right)=u\dfrac{dv}{dx}+\dfrac{du}{dx}v$.
$\Rightarrow \dfrac{dy}{dx}=v\dfrac{dx}{dx}+x\dfrac{dv}{dx}$.
We know that $\dfrac{dx}{dx}=1$.
$\Rightarrow \dfrac{dy}{dx}=v+x\dfrac{dv}{dx}$ ---(5).
We substitute equations (4) and (5) in equation (3).
$\Rightarrow {{e}^{v}}+v=v+x\dfrac{dv}{dx}$.
$\Rightarrow {{e}^{v}}=-v+v+x\dfrac{dv}{dx}$.
$\Rightarrow {{e}^{v}}=x\dfrac{dv}{dx}$.
$\Rightarrow {{e}^{-v}}dv=\dfrac{dx}{x}$.
We perform integration on both sides.
$\Rightarrow \int{{{e}^{-v}}dv}=\int{\dfrac{dx}{x}}$.
We know that $\int{{{e}^{ax}}dx=\dfrac{{{e}^{ax}}}{a}+C}$ and $\int{\dfrac{dx}{x}=\log x+C}$.
$\Rightarrow \dfrac{{{e}^{-v}}}{-1}=\log x+C$.
$\Rightarrow -{{e}^{-v}}=\log x+C$ ---(6).
We have $y=vx$ and now we find the function v.
$\Rightarrow v=\dfrac{y}{x}$ --- (7).
We substitute equation (7) in equation (6).
$\Rightarrow -{{e}^{-\dfrac{y}{x}}}=\log x+C$ ---(8).
Let us substitute $x=1$, $y=1$ in equation (8).
$\Rightarrow -{{e}^{-\dfrac{1}{1}}}=\log 1+C$.
$\Rightarrow -{{e}^{-1}}=0+C$.
$\Rightarrow -{{e}^{-1}}=C$.
Let us substitute the value of C in equation (8).
We get the particular solution as $\Rightarrow -{{e}^{-\dfrac{y}{x}}}=\log x-{{e}^{-1}}$.
$\Rightarrow {{e}^{-1}}-{{e}^{-\dfrac{y}{x}}}=\log x$.
The particular solution at $x=1$, $y=1$ is ${{e}^{-1}}-{{e}^{-\dfrac{y}{x}}}=\log x$.
∴ The given differential equation is homogeneous and the particular solution at at $x=1$, $y=1$ is ${{e}^{-1}}-{{e}^{-\dfrac{y}{x}}}=\log x$.
Note: We should not say general solution without substituting the value of v. The particular solutions are found only if the values of variables ‘x’ and ‘y’ are given in the problem. We can’t just assume the value of arbitrary constant C without them. We use the process of substituting $y=vx$ only if the differential equation is proved as homogeneous.
Complete step-by-step answer:
According to the problem, we have a differential equation $\left( x{{e}^{\dfrac{x}{y}}}+y \right)dx=xdy$. We need to prove that the given differential equation is homogeneous and we need to find the particular solution of this differential equation at $x=1$, $y=1$.
Let us assume $f\left( x,y \right)=\left( x{{e}^{\dfrac{x}{y}}}+y \right)dx-xdy$ ---(1).
We know that for a function $f\left( x,y \right)$ said to be homogeneous, it should satisfy the condition $f\left( mx,my \right)={{m}^{n}}.f\left( x,y \right)$. Let us verify this for the function in equation (1).
We substitute $\left( mx,my \right)$ in place of $\left( x,y \right)$ in equation (1).
$\Rightarrow f\left( mx,my \right)=\left( \left( mx \right).{{e}^{\dfrac{mx}{my}}}+my \right)d\left( mx \right)-\left( mx \right)d\left( my \right)$.
$\Rightarrow f\left( mx,my \right)=\left( \left( mx \right).{{e}^{\dfrac{x}{y}}}+my \right).mdx-\left( mx \right).mdy$
$\Rightarrow f\left( mx,my \right)={{m}^{2}}.\left( \left( x{{e}^{\dfrac{x}{y}}}+y \right)dx-xdy \right)$.
$\Rightarrow f\left( mx,my \right)={{m}^{2}}.f\left( x,y \right)$ ---(2).
So, we can see that the function $f\left( x,y \right)$ satisfies the condition $f\left( mx,my \right)={{m}^{n}}.f\left( x,y \right)$ of being homogeneous. So, the differential equation $\left( x{{e}^{\dfrac{x}{y}}}+y \right)dx=xdy$ is homogeneous.
Now, we find the general solution for the given differential equation $\left( x{{e}^{\dfrac{x}{y}}}+y \right)dx=xdy$ to find the particular solution at $x=1$, $y=\dfrac{\pi }{2}$.
$\Rightarrow \left( x{{e}^{\dfrac{x}{y}}}+y \right)dx=xdy$.
$\Rightarrow \dfrac{\left( x{{e}^{\dfrac{x}{y}}}+y \right)}{x}=\dfrac{dy}{dx}$.
$\Rightarrow \dfrac{x{{e}^{\dfrac{x}{y}}}}{x}+\dfrac{y}{x}=\dfrac{dy}{dx}$.
$\Rightarrow {{e}^{\dfrac{x}{y}}}+\dfrac{y}{x}=\dfrac{dy}{dx}$ ---(3).
We know that the homogeneous differential equations of the form \[\dfrac{dy}{dx}=f\left( \dfrac{y}{x} \right)\] are solved by substituting $y=vx$ ---(4).
We have $y=vx$. So, we get $v=\dfrac{y}{x}$.
We differentiate with respect to ‘x’ on both sides,
$\Rightarrow \dfrac{dy}{dx}=\dfrac{d}{dx}\left( vx \right)$.
We know that the differentiation of the function of form ‘uv’ is performed as $\dfrac{d}{dx}\left( uv \right)=u\dfrac{dv}{dx}+\dfrac{du}{dx}v$.
$\Rightarrow \dfrac{dy}{dx}=v\dfrac{dx}{dx}+x\dfrac{dv}{dx}$.
We know that $\dfrac{dx}{dx}=1$.
$\Rightarrow \dfrac{dy}{dx}=v+x\dfrac{dv}{dx}$ ---(5).
We substitute equations (4) and (5) in equation (3).
$\Rightarrow {{e}^{v}}+v=v+x\dfrac{dv}{dx}$.
$\Rightarrow {{e}^{v}}=-v+v+x\dfrac{dv}{dx}$.
$\Rightarrow {{e}^{v}}=x\dfrac{dv}{dx}$.
$\Rightarrow {{e}^{-v}}dv=\dfrac{dx}{x}$.
We perform integration on both sides.
$\Rightarrow \int{{{e}^{-v}}dv}=\int{\dfrac{dx}{x}}$.
We know that $\int{{{e}^{ax}}dx=\dfrac{{{e}^{ax}}}{a}+C}$ and $\int{\dfrac{dx}{x}=\log x+C}$.
$\Rightarrow \dfrac{{{e}^{-v}}}{-1}=\log x+C$.
$\Rightarrow -{{e}^{-v}}=\log x+C$ ---(6).
We have $y=vx$ and now we find the function v.
$\Rightarrow v=\dfrac{y}{x}$ --- (7).
We substitute equation (7) in equation (6).
$\Rightarrow -{{e}^{-\dfrac{y}{x}}}=\log x+C$ ---(8).
Let us substitute $x=1$, $y=1$ in equation (8).
$\Rightarrow -{{e}^{-\dfrac{1}{1}}}=\log 1+C$.
$\Rightarrow -{{e}^{-1}}=0+C$.
$\Rightarrow -{{e}^{-1}}=C$.
Let us substitute the value of C in equation (8).
We get the particular solution as $\Rightarrow -{{e}^{-\dfrac{y}{x}}}=\log x-{{e}^{-1}}$.
$\Rightarrow {{e}^{-1}}-{{e}^{-\dfrac{y}{x}}}=\log x$.
The particular solution at $x=1$, $y=1$ is ${{e}^{-1}}-{{e}^{-\dfrac{y}{x}}}=\log x$.
∴ The given differential equation is homogeneous and the particular solution at at $x=1$, $y=1$ is ${{e}^{-1}}-{{e}^{-\dfrac{y}{x}}}=\log x$.
Note: We should not say general solution without substituting the value of v. The particular solutions are found only if the values of variables ‘x’ and ‘y’ are given in the problem. We can’t just assume the value of arbitrary constant C without them. We use the process of substituting $y=vx$ only if the differential equation is proved as homogeneous.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

Draw a ray diagram of compound microscope when the class 12 physics CBSE

Give simple chemical tests to distinguish between the class 12 chemistry CBSE

Using Huygens wave theory derive Snells law of ref class 12 physics CBSE

Dihybrid cross is made between RRYY yellow round seed class 12 biology CBSE

