
Show that the differential equation $2y{{e}^{\dfrac{x}{y}}}dx+\left( y-2x{{e}^{\dfrac{x}{y}}} \right)dy=0$ is homogeneous. Find the particular solution of this differential equation, given that x = 0, when y = 1.
Answer
619.2k+ views
Hint: Condition for any differential equation F(x, 4) to be homogeneous or not is given as
$F\left( \lambda x,\lambda y \right)={{\lambda }^{n}}F\left( x,y \right)$
Substitute y = vx or v = xy to solve the given differential equation. Put values of (x, y) as (0, 1) to get the particular solution.
Complete step-by-step answer:
Here, given differential equation is
$2y{{e}^{\dfrac{x}{y}}}dx+\left( y-2x{{e}^{\dfrac{x}{y}}} \right)dy=0$ …………….. (i)
Now, we need to prove this equation as a homogeneous and have to get a particular solution at x = 0 and y = 1.
We know that any differential equation will be a homogeneous one if it satisfies the condition:
$F\left( \lambda x,\lambda y \right)={{\lambda }^{n}}F\left( x,y \right)$ ……………….. (ii)
Where n is any integer.
Now, we have F(x, y) from equation (i) as
$F\left( x,y \right)=2y{{e}^{\dfrac{x}{y}}}dx+\left( y-2x{{e}^{\dfrac{x}{y}}} \right)dy=0$
And hence$F\left( \lambda x,\lambda y \right)$can be calculated by putting $x=\lambda x$ and $y=\lambda y$in the above equation. Hence, we get
\[F\left( \lambda x,\lambda y \right)=2\lambda y{{e}^{\left( \dfrac{\lambda x}{\lambda y} \right)}}dx+\left( \lambda y-2\lambda x{{e}^{\dfrac{\lambda x}{\lambda y}}} \right)dy\]
On simplifying the above equation, we get
$\begin{align}
& F\left( \lambda x,\lambda y \right)=\lambda \left[ 2y{{e}^{\dfrac{x}{y}}}dx+\left( y-2x{{e}^{\dfrac{x}{y}}} \right)dy \right] \\
& \Rightarrow F\left( \lambda x,\lambda y \right)={{\lambda }^{1}}F\left( x,y \right) \\
\end{align}$
Hence, we observe that the above relation is following the condition expressed in equation (ii), hence, we get to know that the given differential equation is a homogenous one. Now, let us solve the given differential equation in the following way.
Equation (i) can be divided by ‘dx’, So, we get
$\begin{align}
& \dfrac{2y{{e}^{\dfrac{x}{y}}}dx+\left( y-2x{{e}^{\dfrac{x}{y}}} \right)dy}{dx}=0 \\
& \Rightarrow 2y{{e}^{\dfrac{x}{y}}}+\left( y-2x{{e}^{\dfrac{x}{y}}} \right)\dfrac{dy}{dx}=0 \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{-2y{{e}^{\left( \dfrac{x}{y} \right)}}}{y-2x{{e}^{\left( \dfrac{x}{y} \right)}}}..........(iii) \\
\end{align}$
Now, put y = vx in the equation (iii), since, y = vx
Now, differentiate it with respect to ‘x’ o get the value of $\dfrac{dy}{dx}$. Hence, we get
$\dfrac{dy}{dx}=v\dfrac{dx}{dx}+x\dfrac{dv}{dx}$
Where, we have applied relationship:
$\dfrac{dy}{dx}\left( u.v \right)=u\dfrac{dv}{dx}+v\dfrac{du}{dx}$ where u and v are general functions in multiplication.
Hence, we get
$\dfrac{dy}{dx}=v+x\dfrac{du}{dx}$……………… (iv)
Now, put y =vx in equation (iii) and replace $\dfrac{dy}{dx}$by $v+x\dfrac{du}{dx}$
Hence, we get
$\begin{align}
& v+x\dfrac{du}{dx}=\dfrac{-2vx{{e}^{\dfrac{x}{vx}}}}{vx-2x{{e}^{\dfrac{x}{vx}}}} \\
& \Rightarrow v+x\dfrac{du}{dx}=\dfrac{-2v{{e}^{\dfrac{1}{v}}}}{v-2{{e}^{\dfrac{1}{v}}}} \\
& \Rightarrow x\dfrac{du}{dx}=\dfrac{-2v{{e}^{\dfrac{1}{v}}}}{v-2{{e}^{\dfrac{1}{v}}}}-\dfrac{v}{1} \\
& \Rightarrow x\dfrac{du}{dx}=\dfrac{-2v{{e}^{\dfrac{1}{v}}}-{{v}^{2}}+2v{{e}^{\dfrac{1}{v}}}}{v-2{{e}^{\dfrac{1}{v}}}} \\
& \Rightarrow x\dfrac{du}{dx}=\dfrac{-{{v}^{2}}}{v-2{{e}^{\dfrac{1}{v}}}} \\
\end{align}$
Now, we can separate the variables ‘v’ and ‘x’ as
$\dfrac{v-2{{e}^{\dfrac{1}{v}}}}{{{v}^{2}}}dv=-\dfrac{dx}{x}$
Now, integrate both the sides to get a solution of the differential equation.
Hence, we get
$\int{\dfrac{v-2{{e}^{\dfrac{1}{v}}}}{{{v}^{2}}}dv=-\int{\dfrac{1}{x}dx}}$ ……………. (v)
Let ${{I}_{1}}=\int{\dfrac{v-2{{e}^{\dfrac{1}{v}}}}{{{v}^{2}}}dv}$and ${{I}_{2}}=-\int{\dfrac{1}{x}dx}$
Let us solve ${{I}_{1}}$ and ${{I}_{2}}$ to get equation (v).
Hence, ${{I}_{1}}$ can be written as
$\begin{align}
& {{I}_{1}}=\int{\dfrac{1}{v}dv}-\int{\dfrac{2{{e}^{\dfrac{1}{v}}}}{{{v}^{2}}}}dv \\
& \\
\end{align}$
Now, we know
$\int{\dfrac{1}{x}dx}={{\log }_{e}}x$
Hence, ${{I}_{1}}$can be given as
${{I}_{1}}={{\log }_{e}}v-2\int{\dfrac{{{e}^{\dfrac{1}{v}}}}{{{v}^{2}}}dv}$ …………………… (vi)
Suppose
$\dfrac{1}{v}=t$ for second integral
Now, differentiate it with respect to ‘t’.
We know $\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}$
Hence,
$\begin{align}
& \dfrac{d}{dt}\left( {{v}^{-1}} \right)=\dfrac{d}{dt}\left( t \right) \\
& \Rightarrow \dfrac{-1}{{{v}^{2}}}\dfrac{dv}{dt}=1 \\
& \Rightarrow \dfrac{1}{{{v}^{2}}}dv=-dt \\
\end{align}$
Now, replace $\dfrac{1}{v}$ by t and $\dfrac{1}{{{v}^{2}}}dv$ by ‘-dt’ in equation (vi) for the integral part only.
$\begin{align}
& {{I}_{1}}={{\log }_{e}}v-2\int{\left( -{{e}^{t}} \right)dt} \\
& \Rightarrow {{I}_{1}}={{\log }_{e}}v+2\int{{{e}^{t}}dt} \\
\end{align}$
We know $\int{{{e}^{x}}dx}={{e}^{x}}$. Hence,
${{I}_{1}}={{\log }_{e}}v+2{{e}^{t}}+{{C}_{1}}$ where ${{C}_{1}}$ is a constant.
Put $t=\dfrac{1}{v}$ . hence, we get
${{I}_{1}}={{\log }_{e}}v+2{{e}^{\dfrac{1}{v}}}+{{C}_{1}}$…………… (vii)
Now, we can get value of ${{I}_{2}}$ by using relation $\int{\dfrac{1}{x}dx}={{\log }_{e}}x$
Hence, we get
${{I}_{2}}=\int{\dfrac{1}{x}dx}={{\log }_{e}}x+{{C}_{2}}$………….. (viii)
Where ${{C}_{2}}$ is a constant.
Now put values of ${{I}_{1}}$ and ${{I}_{2}}$from equations (vii) and (viii), we get
${{\log }_{e}}v+2{{e}^{\dfrac{1}{v}}}+{{C}_{1}}=-{{\log }_{e}}x+{{C}_{2}}$
As we supposed y = vx, hence the value of v can be given as $v=\dfrac{y}{x}$.
Hence, we get the above equation as
${{\log }_{e}}\left( \dfrac{y}{x} \right)+2{{e}^{\left( \dfrac{x}{y} \right)}}=-{{\log }_{e}}x+\left( {{c}_{2}}-{{c}_{1}} \right)$
Now replace ${{c}_{2}}-{{c}_{1}}=c$.
Hence, general solution of given differentiable be
$\begin{align}
& {{\log }_{e}}\left( \dfrac{y}{x} \right)+2{{e}^{\left( \dfrac{x}{y} \right)}}=-{{\log }_{e}}x+C \\
& \Rightarrow {{\log }_{e}}\left( \dfrac{y}{x} \right)+{{\log }_{e}}x+2{{e}^{\left( \dfrac{x}{y} \right)}}=C\ldots \ldots \ldots \ldots \ldots \text{ }\left( ix \right) \\
\end{align}$
Now, use logarithm identity given as ${{\log }_{c}}a+{{\log }_{c}}b={{\log }_{c}}ab$ . Hence, we get
$\begin{align}
& {{\log }_{e}}\left( \dfrac{y}{x}\times x \right)+2{{e}^{\left( \dfrac{x}{y} \right)}}=C \\
& \Rightarrow {{\log }_{e}}y+2{{e}^{\dfrac{x}{y}}}=C...........(x) \\
\end{align}$
Now, put x = 0 and y = 1 in the above equation to get a particular solution. Hence by putting values of ‘x’ and ‘y’, we get
${{\log }_{e}}\left( 1 \right)+2{{e}^{\dfrac{0}{1}}}=C$
Value of ${{\log }_{e}}1=0$ and ${{e}^{o}}=1$, hence, we get
0 + 2 = C
Or C = 2
Hence, particular solution can be given from equation (x) by putting C = 2, we get
${{\log }_{e}}y+2{{e}^{\left( \dfrac{x}{y} \right)}}=2$
Note: One can use x = vy to solve the given homogeneous equation and replace $\dfrac{dx}{dy}$ by $v+y\dfrac{dv}{dy}$ to get the solution.
One may not able to put x = 0 and y = 1 in equation ${{\log }_{e}}\left( \dfrac{y}{x} \right)+{{\log }_{e}}x+2{{e}^{\left( \dfrac{x}{y} \right)}}=C$ as ${{\log }_{e}}\left( \dfrac{y}{x} \right)$ and ${{\log }_{e}}\left( x \right)$will not accept x = 0. So, first simplify the equation to get the equation ${{\log }_{e}}y+2{{e}^{\dfrac{x}{y}}}=C$, then try to put x = 1 and y = 1 in it.
Calculation is the important part of the question as well, so take care with the calculating part as well.
$F\left( \lambda x,\lambda y \right)={{\lambda }^{n}}F\left( x,y \right)$
Substitute y = vx or v = xy to solve the given differential equation. Put values of (x, y) as (0, 1) to get the particular solution.
Complete step-by-step answer:
Here, given differential equation is
$2y{{e}^{\dfrac{x}{y}}}dx+\left( y-2x{{e}^{\dfrac{x}{y}}} \right)dy=0$ …………….. (i)
Now, we need to prove this equation as a homogeneous and have to get a particular solution at x = 0 and y = 1.
We know that any differential equation will be a homogeneous one if it satisfies the condition:
$F\left( \lambda x,\lambda y \right)={{\lambda }^{n}}F\left( x,y \right)$ ……………….. (ii)
Where n is any integer.
Now, we have F(x, y) from equation (i) as
$F\left( x,y \right)=2y{{e}^{\dfrac{x}{y}}}dx+\left( y-2x{{e}^{\dfrac{x}{y}}} \right)dy=0$
And hence$F\left( \lambda x,\lambda y \right)$can be calculated by putting $x=\lambda x$ and $y=\lambda y$in the above equation. Hence, we get
\[F\left( \lambda x,\lambda y \right)=2\lambda y{{e}^{\left( \dfrac{\lambda x}{\lambda y} \right)}}dx+\left( \lambda y-2\lambda x{{e}^{\dfrac{\lambda x}{\lambda y}}} \right)dy\]
On simplifying the above equation, we get
$\begin{align}
& F\left( \lambda x,\lambda y \right)=\lambda \left[ 2y{{e}^{\dfrac{x}{y}}}dx+\left( y-2x{{e}^{\dfrac{x}{y}}} \right)dy \right] \\
& \Rightarrow F\left( \lambda x,\lambda y \right)={{\lambda }^{1}}F\left( x,y \right) \\
\end{align}$
Hence, we observe that the above relation is following the condition expressed in equation (ii), hence, we get to know that the given differential equation is a homogenous one. Now, let us solve the given differential equation in the following way.
Equation (i) can be divided by ‘dx’, So, we get
$\begin{align}
& \dfrac{2y{{e}^{\dfrac{x}{y}}}dx+\left( y-2x{{e}^{\dfrac{x}{y}}} \right)dy}{dx}=0 \\
& \Rightarrow 2y{{e}^{\dfrac{x}{y}}}+\left( y-2x{{e}^{\dfrac{x}{y}}} \right)\dfrac{dy}{dx}=0 \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{-2y{{e}^{\left( \dfrac{x}{y} \right)}}}{y-2x{{e}^{\left( \dfrac{x}{y} \right)}}}..........(iii) \\
\end{align}$
Now, put y = vx in the equation (iii), since, y = vx
Now, differentiate it with respect to ‘x’ o get the value of $\dfrac{dy}{dx}$. Hence, we get
$\dfrac{dy}{dx}=v\dfrac{dx}{dx}+x\dfrac{dv}{dx}$
Where, we have applied relationship:
$\dfrac{dy}{dx}\left( u.v \right)=u\dfrac{dv}{dx}+v\dfrac{du}{dx}$ where u and v are general functions in multiplication.
Hence, we get
$\dfrac{dy}{dx}=v+x\dfrac{du}{dx}$……………… (iv)
Now, put y =vx in equation (iii) and replace $\dfrac{dy}{dx}$by $v+x\dfrac{du}{dx}$
Hence, we get
$\begin{align}
& v+x\dfrac{du}{dx}=\dfrac{-2vx{{e}^{\dfrac{x}{vx}}}}{vx-2x{{e}^{\dfrac{x}{vx}}}} \\
& \Rightarrow v+x\dfrac{du}{dx}=\dfrac{-2v{{e}^{\dfrac{1}{v}}}}{v-2{{e}^{\dfrac{1}{v}}}} \\
& \Rightarrow x\dfrac{du}{dx}=\dfrac{-2v{{e}^{\dfrac{1}{v}}}}{v-2{{e}^{\dfrac{1}{v}}}}-\dfrac{v}{1} \\
& \Rightarrow x\dfrac{du}{dx}=\dfrac{-2v{{e}^{\dfrac{1}{v}}}-{{v}^{2}}+2v{{e}^{\dfrac{1}{v}}}}{v-2{{e}^{\dfrac{1}{v}}}} \\
& \Rightarrow x\dfrac{du}{dx}=\dfrac{-{{v}^{2}}}{v-2{{e}^{\dfrac{1}{v}}}} \\
\end{align}$
Now, we can separate the variables ‘v’ and ‘x’ as
$\dfrac{v-2{{e}^{\dfrac{1}{v}}}}{{{v}^{2}}}dv=-\dfrac{dx}{x}$
Now, integrate both the sides to get a solution of the differential equation.
Hence, we get
$\int{\dfrac{v-2{{e}^{\dfrac{1}{v}}}}{{{v}^{2}}}dv=-\int{\dfrac{1}{x}dx}}$ ……………. (v)
Let ${{I}_{1}}=\int{\dfrac{v-2{{e}^{\dfrac{1}{v}}}}{{{v}^{2}}}dv}$and ${{I}_{2}}=-\int{\dfrac{1}{x}dx}$
Let us solve ${{I}_{1}}$ and ${{I}_{2}}$ to get equation (v).
Hence, ${{I}_{1}}$ can be written as
$\begin{align}
& {{I}_{1}}=\int{\dfrac{1}{v}dv}-\int{\dfrac{2{{e}^{\dfrac{1}{v}}}}{{{v}^{2}}}}dv \\
& \\
\end{align}$
Now, we know
$\int{\dfrac{1}{x}dx}={{\log }_{e}}x$
Hence, ${{I}_{1}}$can be given as
${{I}_{1}}={{\log }_{e}}v-2\int{\dfrac{{{e}^{\dfrac{1}{v}}}}{{{v}^{2}}}dv}$ …………………… (vi)
Suppose
$\dfrac{1}{v}=t$ for second integral
Now, differentiate it with respect to ‘t’.
We know $\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}$
Hence,
$\begin{align}
& \dfrac{d}{dt}\left( {{v}^{-1}} \right)=\dfrac{d}{dt}\left( t \right) \\
& \Rightarrow \dfrac{-1}{{{v}^{2}}}\dfrac{dv}{dt}=1 \\
& \Rightarrow \dfrac{1}{{{v}^{2}}}dv=-dt \\
\end{align}$
Now, replace $\dfrac{1}{v}$ by t and $\dfrac{1}{{{v}^{2}}}dv$ by ‘-dt’ in equation (vi) for the integral part only.
$\begin{align}
& {{I}_{1}}={{\log }_{e}}v-2\int{\left( -{{e}^{t}} \right)dt} \\
& \Rightarrow {{I}_{1}}={{\log }_{e}}v+2\int{{{e}^{t}}dt} \\
\end{align}$
We know $\int{{{e}^{x}}dx}={{e}^{x}}$. Hence,
${{I}_{1}}={{\log }_{e}}v+2{{e}^{t}}+{{C}_{1}}$ where ${{C}_{1}}$ is a constant.
Put $t=\dfrac{1}{v}$ . hence, we get
${{I}_{1}}={{\log }_{e}}v+2{{e}^{\dfrac{1}{v}}}+{{C}_{1}}$…………… (vii)
Now, we can get value of ${{I}_{2}}$ by using relation $\int{\dfrac{1}{x}dx}={{\log }_{e}}x$
Hence, we get
${{I}_{2}}=\int{\dfrac{1}{x}dx}={{\log }_{e}}x+{{C}_{2}}$………….. (viii)
Where ${{C}_{2}}$ is a constant.
Now put values of ${{I}_{1}}$ and ${{I}_{2}}$from equations (vii) and (viii), we get
${{\log }_{e}}v+2{{e}^{\dfrac{1}{v}}}+{{C}_{1}}=-{{\log }_{e}}x+{{C}_{2}}$
As we supposed y = vx, hence the value of v can be given as $v=\dfrac{y}{x}$.
Hence, we get the above equation as
${{\log }_{e}}\left( \dfrac{y}{x} \right)+2{{e}^{\left( \dfrac{x}{y} \right)}}=-{{\log }_{e}}x+\left( {{c}_{2}}-{{c}_{1}} \right)$
Now replace ${{c}_{2}}-{{c}_{1}}=c$.
Hence, general solution of given differentiable be
$\begin{align}
& {{\log }_{e}}\left( \dfrac{y}{x} \right)+2{{e}^{\left( \dfrac{x}{y} \right)}}=-{{\log }_{e}}x+C \\
& \Rightarrow {{\log }_{e}}\left( \dfrac{y}{x} \right)+{{\log }_{e}}x+2{{e}^{\left( \dfrac{x}{y} \right)}}=C\ldots \ldots \ldots \ldots \ldots \text{ }\left( ix \right) \\
\end{align}$
Now, use logarithm identity given as ${{\log }_{c}}a+{{\log }_{c}}b={{\log }_{c}}ab$ . Hence, we get
$\begin{align}
& {{\log }_{e}}\left( \dfrac{y}{x}\times x \right)+2{{e}^{\left( \dfrac{x}{y} \right)}}=C \\
& \Rightarrow {{\log }_{e}}y+2{{e}^{\dfrac{x}{y}}}=C...........(x) \\
\end{align}$
Now, put x = 0 and y = 1 in the above equation to get a particular solution. Hence by putting values of ‘x’ and ‘y’, we get
${{\log }_{e}}\left( 1 \right)+2{{e}^{\dfrac{0}{1}}}=C$
Value of ${{\log }_{e}}1=0$ and ${{e}^{o}}=1$, hence, we get
0 + 2 = C
Or C = 2
Hence, particular solution can be given from equation (x) by putting C = 2, we get
${{\log }_{e}}y+2{{e}^{\left( \dfrac{x}{y} \right)}}=2$
Note: One can use x = vy to solve the given homogeneous equation and replace $\dfrac{dx}{dy}$ by $v+y\dfrac{dv}{dy}$ to get the solution.
One may not able to put x = 0 and y = 1 in equation ${{\log }_{e}}\left( \dfrac{y}{x} \right)+{{\log }_{e}}x+2{{e}^{\left( \dfrac{x}{y} \right)}}=C$ as ${{\log }_{e}}\left( \dfrac{y}{x} \right)$ and ${{\log }_{e}}\left( x \right)$will not accept x = 0. So, first simplify the equation to get the equation ${{\log }_{e}}y+2{{e}^{\dfrac{x}{y}}}=C$, then try to put x = 1 and y = 1 in it.
Calculation is the important part of the question as well, so take care with the calculating part as well.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

