
Show that the area of the triangle formed by the lines $a{{x}^{2}}+2hxy+b{{y}^{2}}=0$ and $lx+my+n=0$ is $\left| \dfrac{{{n}^{2}}\sqrt{{{h}^{2}}-ab}}{a{{m}^{2}}-2hlm+b{{l}^{2}}} \right|$ .
Answer
520.2k+ views
Hint: First of all, we should assume two lines that form the pair of equations, and then find the relations by multiplying the equations of these lines and comparing them with the given equation. Then, using the equations of these straight lines, we can find the three points of the triangle. Now since we know the vertices of triangle, we can calculate its area by using the formula $Area=\dfrac{1}{2}\left| \begin{matrix}
{{x}_{1}} & {{y}_{1}} & 1 \\
{{x}_{2}} & {{y}_{2}} & 1 \\
{{x}_{3}} & {{y}_{3}} & 1 \\
\end{matrix} \right|$ .
Complete step by step solution:
We are given with the equation of pair of straight lines $a{{x}^{2}}+2hxy+b{{y}^{2}}=0...\left( i \right)$
By analysing this equation, we can say that it contains two straight lines that intersect at the origin. Let the origin be O.
Since both of these lines pass through origin O, we can assume the lines to be ${{l}_{1}}x+{{m}_{1}}y=0$ and ${{l}_{2}}x+{{m}_{2}}y=0$ .
Hence, we can write
$\left( {{l}_{1}}x+{{m}_{1}}y \right)\left( {{l}_{2}}x+{{m}_{2}}y \right)=0$
$\Rightarrow {{l}_{1}}{{l}_{2}}{{x}^{2}}+\left( {{l}_{1}}{{m}_{2}}+{{l}_{2}}{{m}_{1}} \right)xy+{{m}_{1}}{{m}_{2}}{{y}^{2}}=0$
We can compare this equation with equation (i), to get
$\begin{align}
& {{l}_{1}}{{l}_{2}}=a \\
& {{l}_{1}}{{m}_{2}}+{{l}_{2}}{{m}_{1}}=2h \\
& {{m}_{1}}{{m}_{2}}=b \\
\end{align}$
Let us draw an arbitrary figure for simplification.
To calculate the area, we need the coordinates of the vertices of the triangle. We already have the coordinates of the origin O (0,0).
To find A, we need to solve ${{l}_{1}}x+{{m}_{1}}y=0$ and $lx+my+n=0$ simultaneously. Let us use the cross-multiplication method to solve these two equations.
$\dfrac{x}{\left( {{m}_{1}}n-0 \right)}=\dfrac{y}{\left( 0-{{l}_{1}}n \right)}=\dfrac{1}{\left( {{l}_{1}}m-l{{m}_{1}} \right)}$
Hence, we have
$\begin{align}
& x=\dfrac{{{m}_{1}}n}{{{l}_{1}}m-l{{m}_{1}}} \\
& y=\dfrac{-{{l}_{1}}n}{{{l}_{1}}m-l{{m}_{1}}} \\
\end{align}$
Thus, we get the coordinates of point A as $\left( \dfrac{{{m}_{1}}n}{{{l}_{1}}m-l{{m}_{1}}},\dfrac{-{{l}_{1}}n}{{{l}_{1}}m-l{{m}_{1}}} \right)$ .
Similarly, to find B, we need to solve ${{l}_{2}}x+{{m}_{2}}y=0$ and $lx+my+n=0$ simultaneously. Let us use the cross-multiplication method to solve these two equations.
$\dfrac{x}{\left( {{m}_{2}}n-0 \right)}=\dfrac{y}{\left( 0-{{l}_{2}}n \right)}=\dfrac{1}{\left( {{l}_{2}}m-l{{m}_{2}} \right)}$
Hence, we have
$\begin{align}
& x=\dfrac{{{m}_{2}}n}{{{l}_{2}}m-l{{m}_{2}}} \\
& y=\dfrac{-{{l}_{2}}n}{{{l}_{2}}m-l{{m}_{2}}} \\
\end{align}$
Thus, we get the coordinates of point B as $\left( \dfrac{{{m}_{2}}n}{{{l}_{2}}m-l{{m}_{2}}},\dfrac{-{{l}_{2}}n}{{{l}_{2}}m-l{{m}_{2}}} \right)$ .
We know that the area of a triangle with coordinates $\left( {{x}_{1}},{{y}_{1}} \right),\left( {{x}_{2}},{{y}_{2}} \right)\text{ and }\left( {{x}_{3}},{{y}_{3}} \right)$ is
$Area=\dfrac{1}{2}\left| \begin{matrix}
{{x}_{1}} & {{y}_{1}} & 1 \\
{{x}_{2}} & {{y}_{2}} & 1 \\
{{x}_{3}} & {{y}_{3}} & 1 \\
\end{matrix} \right|$
Thus, for the triangle OAB, we have
$Area=\dfrac{1}{2}\left| \begin{matrix}
0 & 0 & 1 \\
\dfrac{{{m}_{1}}n}{{{l}_{1}}m-l{{m}_{1}}} & \dfrac{-{{l}_{1}}n}{{{l}_{1}}m-l{{m}_{1}}} & 1 \\
\dfrac{{{m}_{2}}n}{{{l}_{2}}m-l{{m}_{2}}} & \dfrac{-{{l}_{2}}n}{{{l}_{2}}m-l{{m}_{2}}} & 1 \\
\end{matrix} \right|$
By evaluating the determinant, we get
$Area=\dfrac{1}{2}\left| 1\left\{ \left( \dfrac{{{m}_{1}}n}{{{l}_{1}}m-l{{m}_{1}}}\times \dfrac{-{{l}_{2}}n}{{{l}_{2}}m-l{{m}_{2}}} \right)-\left( \dfrac{{{m}_{2}}n}{{{l}_{2}}m-l{{m}_{2}}}\times \dfrac{-{{l}_{1}}n}{{{l}_{1}}m-l{{m}_{1}}} \right) \right\} \right|$
$\Rightarrow Area=\dfrac{1}{2}\left| \left( \dfrac{{{m}_{1}}n}{{{l}_{1}}m-l{{m}_{1}}}\times \dfrac{-{{l}_{2}}n}{{{l}_{2}}m-l{{m}_{2}}} \right)-\left( \dfrac{{{m}_{2}}n}{{{l}_{2}}m-l{{m}_{2}}}\times \dfrac{-{{l}_{1}}n}{{{l}_{1}}m-l{{m}_{1}}} \right) \right|$
On simplifying the above equation, we get
$Area=\dfrac{1}{2}\left| \dfrac{{{l}_{1}}{{m}_{2}}{{n}^{2}}-{{l}_{2}}{{m}_{1}}{{n}^{2}}}{\left( {{l}_{1}}m-l{{m}_{1}} \right)\left( {{l}_{2}}m-l{{m}_{2}} \right)} \right|$
\[\Rightarrow Area=\dfrac{1}{2}\left| \dfrac{{{n}^{2}}\left( {{l}_{1}}{{m}_{2}}-{{l}_{2}}{{m}_{1}} \right)}{{{l}_{1}}{{l}_{2}}{{m}^{2}}-{{l}_{1}}l{{m}_{2}}m-{{l}_{2}}l{{m}_{1}}m+{{l}^{2}}{{m}_{1}}{{m}_{2}}} \right|\]
We know that ${{\left( a-b \right)}^{2}}=\left( a+{{b}^{2}} \right)-4ab$ .
We can also write the above identity as $\left( a-b \right)=\sqrt{\left( a+{{b}^{2}} \right)-4ab}$
Using this identity in the equation for area, we get
\[\Rightarrow Area=\dfrac{1}{2}\left| \dfrac{{{n}^{2}}\sqrt{{{\left( {{l}_{1}}{{m}_{2}}+{{l}_{2}}{{m}_{1}} \right)}^{2}}-4{{l}_{1}}{{l}_{2}}{{m}_{1}}{{m}_{2}}}}{{{l}_{1}}{{l}_{2}}{{m}^{2}}-lm\left( {{l}_{1}}{{m}_{2}}+{{l}_{2}}{{m}_{1}} \right)+{{l}^{2}}{{m}_{1}}{{m}_{2}}} \right|\]
Now, substituting the values ${{l}_{1}}{{l}_{2}}=a,\text{ }{{l}_{1}}{{m}_{2}}+{{l}_{2}}{{m}_{1}}=2h\text{ and }{{m}_{1}}{{m}_{2}}=b$ , we get
\[Area=\dfrac{1}{2}\left| \dfrac{{{n}^{2}}\sqrt{{{\left( 2h \right)}^{2}}-4ab}}{a{{m}^{2}}-lm\left( 2h \right)+b{{l}^{2}}} \right|\]
\[\Rightarrow Area=\dfrac{1}{2}\left| \dfrac{2{{n}^{2}}\sqrt{{{h}^{2}}-ab}}{a{{m}^{2}}-2hlm+b{{l}^{2}}} \right|\]
Hence, we get \[Area=\left| \dfrac{{{n}^{2}}\sqrt{{{h}^{2}}-ab}}{a{{m}^{2}}-2hlm+b{{l}^{2}}} \right|\] .
Hence, proved.
Note: We must note that the figure is just schematic, and not to scale. While calculating the area, we must not forget about the modulus sign. This problem involves a lot of calculation, so we must write each step carefully and avoid mistakes. We can use any method to solve the pair of equations while finding the points A and B.
{{x}_{1}} & {{y}_{1}} & 1 \\
{{x}_{2}} & {{y}_{2}} & 1 \\
{{x}_{3}} & {{y}_{3}} & 1 \\
\end{matrix} \right|$ .
Complete step by step solution:
We are given with the equation of pair of straight lines $a{{x}^{2}}+2hxy+b{{y}^{2}}=0...\left( i \right)$
By analysing this equation, we can say that it contains two straight lines that intersect at the origin. Let the origin be O.
Since both of these lines pass through origin O, we can assume the lines to be ${{l}_{1}}x+{{m}_{1}}y=0$ and ${{l}_{2}}x+{{m}_{2}}y=0$ .
Hence, we can write
$\left( {{l}_{1}}x+{{m}_{1}}y \right)\left( {{l}_{2}}x+{{m}_{2}}y \right)=0$
$\Rightarrow {{l}_{1}}{{l}_{2}}{{x}^{2}}+\left( {{l}_{1}}{{m}_{2}}+{{l}_{2}}{{m}_{1}} \right)xy+{{m}_{1}}{{m}_{2}}{{y}^{2}}=0$
We can compare this equation with equation (i), to get
$\begin{align}
& {{l}_{1}}{{l}_{2}}=a \\
& {{l}_{1}}{{m}_{2}}+{{l}_{2}}{{m}_{1}}=2h \\
& {{m}_{1}}{{m}_{2}}=b \\
\end{align}$
Let us draw an arbitrary figure for simplification.
To calculate the area, we need the coordinates of the vertices of the triangle. We already have the coordinates of the origin O (0,0).
To find A, we need to solve ${{l}_{1}}x+{{m}_{1}}y=0$ and $lx+my+n=0$ simultaneously. Let us use the cross-multiplication method to solve these two equations.
$\dfrac{x}{\left( {{m}_{1}}n-0 \right)}=\dfrac{y}{\left( 0-{{l}_{1}}n \right)}=\dfrac{1}{\left( {{l}_{1}}m-l{{m}_{1}} \right)}$
Hence, we have
$\begin{align}
& x=\dfrac{{{m}_{1}}n}{{{l}_{1}}m-l{{m}_{1}}} \\
& y=\dfrac{-{{l}_{1}}n}{{{l}_{1}}m-l{{m}_{1}}} \\
\end{align}$
Thus, we get the coordinates of point A as $\left( \dfrac{{{m}_{1}}n}{{{l}_{1}}m-l{{m}_{1}}},\dfrac{-{{l}_{1}}n}{{{l}_{1}}m-l{{m}_{1}}} \right)$ .
Similarly, to find B, we need to solve ${{l}_{2}}x+{{m}_{2}}y=0$ and $lx+my+n=0$ simultaneously. Let us use the cross-multiplication method to solve these two equations.
$\dfrac{x}{\left( {{m}_{2}}n-0 \right)}=\dfrac{y}{\left( 0-{{l}_{2}}n \right)}=\dfrac{1}{\left( {{l}_{2}}m-l{{m}_{2}} \right)}$
Hence, we have
$\begin{align}
& x=\dfrac{{{m}_{2}}n}{{{l}_{2}}m-l{{m}_{2}}} \\
& y=\dfrac{-{{l}_{2}}n}{{{l}_{2}}m-l{{m}_{2}}} \\
\end{align}$
Thus, we get the coordinates of point B as $\left( \dfrac{{{m}_{2}}n}{{{l}_{2}}m-l{{m}_{2}}},\dfrac{-{{l}_{2}}n}{{{l}_{2}}m-l{{m}_{2}}} \right)$ .
We know that the area of a triangle with coordinates $\left( {{x}_{1}},{{y}_{1}} \right),\left( {{x}_{2}},{{y}_{2}} \right)\text{ and }\left( {{x}_{3}},{{y}_{3}} \right)$ is
$Area=\dfrac{1}{2}\left| \begin{matrix}
{{x}_{1}} & {{y}_{1}} & 1 \\
{{x}_{2}} & {{y}_{2}} & 1 \\
{{x}_{3}} & {{y}_{3}} & 1 \\
\end{matrix} \right|$
Thus, for the triangle OAB, we have
$Area=\dfrac{1}{2}\left| \begin{matrix}
0 & 0 & 1 \\
\dfrac{{{m}_{1}}n}{{{l}_{1}}m-l{{m}_{1}}} & \dfrac{-{{l}_{1}}n}{{{l}_{1}}m-l{{m}_{1}}} & 1 \\
\dfrac{{{m}_{2}}n}{{{l}_{2}}m-l{{m}_{2}}} & \dfrac{-{{l}_{2}}n}{{{l}_{2}}m-l{{m}_{2}}} & 1 \\
\end{matrix} \right|$
By evaluating the determinant, we get
$Area=\dfrac{1}{2}\left| 1\left\{ \left( \dfrac{{{m}_{1}}n}{{{l}_{1}}m-l{{m}_{1}}}\times \dfrac{-{{l}_{2}}n}{{{l}_{2}}m-l{{m}_{2}}} \right)-\left( \dfrac{{{m}_{2}}n}{{{l}_{2}}m-l{{m}_{2}}}\times \dfrac{-{{l}_{1}}n}{{{l}_{1}}m-l{{m}_{1}}} \right) \right\} \right|$
$\Rightarrow Area=\dfrac{1}{2}\left| \left( \dfrac{{{m}_{1}}n}{{{l}_{1}}m-l{{m}_{1}}}\times \dfrac{-{{l}_{2}}n}{{{l}_{2}}m-l{{m}_{2}}} \right)-\left( \dfrac{{{m}_{2}}n}{{{l}_{2}}m-l{{m}_{2}}}\times \dfrac{-{{l}_{1}}n}{{{l}_{1}}m-l{{m}_{1}}} \right) \right|$
On simplifying the above equation, we get
$Area=\dfrac{1}{2}\left| \dfrac{{{l}_{1}}{{m}_{2}}{{n}^{2}}-{{l}_{2}}{{m}_{1}}{{n}^{2}}}{\left( {{l}_{1}}m-l{{m}_{1}} \right)\left( {{l}_{2}}m-l{{m}_{2}} \right)} \right|$
\[\Rightarrow Area=\dfrac{1}{2}\left| \dfrac{{{n}^{2}}\left( {{l}_{1}}{{m}_{2}}-{{l}_{2}}{{m}_{1}} \right)}{{{l}_{1}}{{l}_{2}}{{m}^{2}}-{{l}_{1}}l{{m}_{2}}m-{{l}_{2}}l{{m}_{1}}m+{{l}^{2}}{{m}_{1}}{{m}_{2}}} \right|\]
We know that ${{\left( a-b \right)}^{2}}=\left( a+{{b}^{2}} \right)-4ab$ .
We can also write the above identity as $\left( a-b \right)=\sqrt{\left( a+{{b}^{2}} \right)-4ab}$
Using this identity in the equation for area, we get
\[\Rightarrow Area=\dfrac{1}{2}\left| \dfrac{{{n}^{2}}\sqrt{{{\left( {{l}_{1}}{{m}_{2}}+{{l}_{2}}{{m}_{1}} \right)}^{2}}-4{{l}_{1}}{{l}_{2}}{{m}_{1}}{{m}_{2}}}}{{{l}_{1}}{{l}_{2}}{{m}^{2}}-lm\left( {{l}_{1}}{{m}_{2}}+{{l}_{2}}{{m}_{1}} \right)+{{l}^{2}}{{m}_{1}}{{m}_{2}}} \right|\]
Now, substituting the values ${{l}_{1}}{{l}_{2}}=a,\text{ }{{l}_{1}}{{m}_{2}}+{{l}_{2}}{{m}_{1}}=2h\text{ and }{{m}_{1}}{{m}_{2}}=b$ , we get
\[Area=\dfrac{1}{2}\left| \dfrac{{{n}^{2}}\sqrt{{{\left( 2h \right)}^{2}}-4ab}}{a{{m}^{2}}-lm\left( 2h \right)+b{{l}^{2}}} \right|\]
\[\Rightarrow Area=\dfrac{1}{2}\left| \dfrac{2{{n}^{2}}\sqrt{{{h}^{2}}-ab}}{a{{m}^{2}}-2hlm+b{{l}^{2}}} \right|\]
Hence, we get \[Area=\left| \dfrac{{{n}^{2}}\sqrt{{{h}^{2}}-ab}}{a{{m}^{2}}-2hlm+b{{l}^{2}}} \right|\] .
Hence, proved.
Note: We must note that the figure is just schematic, and not to scale. While calculating the area, we must not forget about the modulus sign. This problem involves a lot of calculation, so we must write each step carefully and avoid mistakes. We can use any method to solve the pair of equations while finding the points A and B.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

