
Show that $\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{{e^{\dfrac{1}{x}}} - 1}}{{{e^{\dfrac{1}{x}}} + 1}}} \right)$ does not exist?
Answer
513k+ views
Hint: Limit is a value for a function that approaches some value. It is an important part of calculus that is used to define continuity, derivatives and integrals. Limit is solved by taking the Left-hand limit and right-hand limit. Solving them separately, if they are equal then the limit exists otherwise do not exist.
Complete answer: We are given a function, $\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{{e^{\dfrac{1}{x}}} - 1}}{{{e^{\dfrac{1}{x}}} + 1}}} \right)$. To check whether the limit of the function exists or not, we need to check for the LHL (Left Hand Limit) and RHL (Right Hand Limit).
So, starting with the Left-Hand-Limit, that is the left side for the value $x \to 0$, that is written as $x \to {0^ - }$:
LHL:
$\mathop {\lim }\limits_{x \to {0^ - }} \left( {\dfrac{{{e^{\dfrac{1}{{ - 0}}}} - 1}}{{{e^{\dfrac{1}{{ - 0}}}} + 1}}} \right)$
Since, we know that $\dfrac{1}{0} = \infty $, so substituting this in the above value, we get:
$\mathop {\lim }\limits_{x \to {0^ - }} \left( {\dfrac{{{e^{\dfrac{1}{{ - 0}}}} - 1}}{{{e^{\dfrac{1}{{ - 0}}}} + 1}}} \right) = \left( {\dfrac{{{e^{ - \infty }} - 1}}{{{e^{ - \infty }} + 1}}} \right)$
Now, we know that ${e^\infty } = \infty $ but for \[{e^{ - \infty }} = \dfrac{1}{{{e^\infty }}} = \dfrac{1}{\infty } = 0\].
So, substituting this value in the above limit, we get:
$ \Rightarrow \left( {\dfrac{{{e^{ - \infty }} - 1}}{{{e^{ - \infty }} + 1}}} \right) = \left( {\dfrac{{0 - 1}}{{0 + 1}}} \right) = - 1$
Therefore, the LHL for the $\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{{e^{\dfrac{1}{x}}} - 1}}{{{e^{\dfrac{1}{x}}} + 1}}} \right)$ is $ - 1$.
Now, for RHL:
Now, for the Right side of the value $x \to 0$, that is written as $x \to {0^ + }$:
$\mathop {\lim }\limits_{x \to {0^ + }} \left( {\dfrac{{{e^{\dfrac{1}{{ + 0}}}} - 1}}{{{e^{\dfrac{1}{{ + 0}}}} + 1}}} \right)$
Since, we know that $\dfrac{1}{0} = \infty $, so substituting this in the above value, we get:
$\mathop {\lim }\limits_{x \to {0^ - }} \left( {\dfrac{{{e^{\dfrac{1}{0}}} - 1}}{{{e^{\dfrac{1}{0}}} + 1}}} \right) = \left( {\dfrac{{{e^\infty } - 1}}{{{e^\infty } + 1}}} \right)$
Taking ${e^\infty }$ common, we get:
\[ \Rightarrow \dfrac{{{e^\infty }\left( {1 - \dfrac{1}{{{e^\infty }}}} \right)}}{{{e^\infty }\left( {1 + \dfrac{1}{{{e^\infty }}}} \right)}}\]
Cancelling out the term ${e^\infty }$:
\[ \Rightarrow \dfrac{{\left( {1 - \dfrac{1}{{{e^\infty }}}} \right)}}{{\left( {1 + \dfrac{1}{{{e^\infty }}}} \right)}}\]
Now, we know that ${e^\infty } = \infty $ but for \[\dfrac{1}{{{e^\infty }}} = \dfrac{1}{\infty } = 0\].
So, substituting this value in the above limit, we get:
\[ \Rightarrow \dfrac{{\left( {1 - \dfrac{1}{{{e^\infty }}}} \right)}}{{\left( {1 + \dfrac{1}{{{e^\infty }}}} \right)}} = \dfrac{{1 - 0}}{{1 + 0}} = 1\]
Therefore, the RHL for the $\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{{e^{\dfrac{1}{x}}} - 1}}{{{e^{\dfrac{1}{x}}} + 1}}} \right)$ is $1$.
Since, we can see that the LHL and RHL are not equal for the limit, that means the limit for the function $\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{{e^{\dfrac{1}{x}}} - 1}}{{{e^{\dfrac{1}{x}}} + 1}}} \right)$ does not exist.
Note:
It’s important to always check for both the left and right side of the limit for the function, in order to say whether a limit exists or not.
There are certain rules or properties that are followed for limits known as the “Law of Limits”- They are as follows- The Notation of a Limit, The sum Rule, The Extended Sum Rule, The Constant Function Rule, The Constant Function Rule, The Constant Multiple Rule and many more.
Complete answer: We are given a function, $\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{{e^{\dfrac{1}{x}}} - 1}}{{{e^{\dfrac{1}{x}}} + 1}}} \right)$. To check whether the limit of the function exists or not, we need to check for the LHL (Left Hand Limit) and RHL (Right Hand Limit).
So, starting with the Left-Hand-Limit, that is the left side for the value $x \to 0$, that is written as $x \to {0^ - }$:
LHL:
$\mathop {\lim }\limits_{x \to {0^ - }} \left( {\dfrac{{{e^{\dfrac{1}{{ - 0}}}} - 1}}{{{e^{\dfrac{1}{{ - 0}}}} + 1}}} \right)$
Since, we know that $\dfrac{1}{0} = \infty $, so substituting this in the above value, we get:
$\mathop {\lim }\limits_{x \to {0^ - }} \left( {\dfrac{{{e^{\dfrac{1}{{ - 0}}}} - 1}}{{{e^{\dfrac{1}{{ - 0}}}} + 1}}} \right) = \left( {\dfrac{{{e^{ - \infty }} - 1}}{{{e^{ - \infty }} + 1}}} \right)$
Now, we know that ${e^\infty } = \infty $ but for \[{e^{ - \infty }} = \dfrac{1}{{{e^\infty }}} = \dfrac{1}{\infty } = 0\].
So, substituting this value in the above limit, we get:
$ \Rightarrow \left( {\dfrac{{{e^{ - \infty }} - 1}}{{{e^{ - \infty }} + 1}}} \right) = \left( {\dfrac{{0 - 1}}{{0 + 1}}} \right) = - 1$
Therefore, the LHL for the $\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{{e^{\dfrac{1}{x}}} - 1}}{{{e^{\dfrac{1}{x}}} + 1}}} \right)$ is $ - 1$.
Now, for RHL:
Now, for the Right side of the value $x \to 0$, that is written as $x \to {0^ + }$:
$\mathop {\lim }\limits_{x \to {0^ + }} \left( {\dfrac{{{e^{\dfrac{1}{{ + 0}}}} - 1}}{{{e^{\dfrac{1}{{ + 0}}}} + 1}}} \right)$
Since, we know that $\dfrac{1}{0} = \infty $, so substituting this in the above value, we get:
$\mathop {\lim }\limits_{x \to {0^ - }} \left( {\dfrac{{{e^{\dfrac{1}{0}}} - 1}}{{{e^{\dfrac{1}{0}}} + 1}}} \right) = \left( {\dfrac{{{e^\infty } - 1}}{{{e^\infty } + 1}}} \right)$
Taking ${e^\infty }$ common, we get:
\[ \Rightarrow \dfrac{{{e^\infty }\left( {1 - \dfrac{1}{{{e^\infty }}}} \right)}}{{{e^\infty }\left( {1 + \dfrac{1}{{{e^\infty }}}} \right)}}\]
Cancelling out the term ${e^\infty }$:
\[ \Rightarrow \dfrac{{\left( {1 - \dfrac{1}{{{e^\infty }}}} \right)}}{{\left( {1 + \dfrac{1}{{{e^\infty }}}} \right)}}\]
Now, we know that ${e^\infty } = \infty $ but for \[\dfrac{1}{{{e^\infty }}} = \dfrac{1}{\infty } = 0\].
So, substituting this value in the above limit, we get:
\[ \Rightarrow \dfrac{{\left( {1 - \dfrac{1}{{{e^\infty }}}} \right)}}{{\left( {1 + \dfrac{1}{{{e^\infty }}}} \right)}} = \dfrac{{1 - 0}}{{1 + 0}} = 1\]
Therefore, the RHL for the $\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{{e^{\dfrac{1}{x}}} - 1}}{{{e^{\dfrac{1}{x}}} + 1}}} \right)$ is $1$.
Since, we can see that the LHL and RHL are not equal for the limit, that means the limit for the function $\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{{e^{\dfrac{1}{x}}} - 1}}{{{e^{\dfrac{1}{x}}} + 1}}} \right)$ does not exist.
Note:
It’s important to always check for both the left and right side of the limit for the function, in order to say whether a limit exists or not.
There are certain rules or properties that are followed for limits known as the “Law of Limits”- They are as follows- The Notation of a Limit, The sum Rule, The Extended Sum Rule, The Constant Function Rule, The Constant Function Rule, The Constant Multiple Rule and many more.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

