
Show that $\left| {\begin{array}{*{20}{c}}
1&{yz}&{y + z} \\
1&{zx}&{z + x} \\
1&{xy}&{x + y}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
1&x&{{x^2}} \\
1&y&{{y^2}} \\
1&z&{{z^2}}
\end{array}} \right|$.
Answer
586.8k+ views
Hint: First take the L.H.S. and subtract row 1 (${R_1}$) from row 2 (${R_2}$) and row 3 (${R_3}$). After that, take common from row 2 (${R_2}$) and row 3 (${R_3}$). Now, solve the determinant along column 1 (${C_1}$). Then, take the R.H.S. and subtract r and subtract row 1 (${R_1}$) from row 2 (${R_2}$) and row 3 (${R_3}$). After that, take common from row 2 (${R_2}$) and row 3 (${R_3}$). Now, solve the determinant along column 1 (${C_1}$). Now check if the value of L.H.S. is equal to R.H.S. or not.
Complete step-by-step answer:
Take L.H.S. and simplify it.
$\left| {\begin{array}{*{20}{c}}
1&{yz}&{y + z} \\
1&{zx}&{z + x} \\
1&{xy}&{x + y}
\end{array}} \right|$
Subtract row 1 from row 2 and row 3,
$\begin{gathered}
{R_2} \to {R_2} - {R_1} \\
{R_3} \to {R_3} - {R_1} \\
\end{gathered} $
$\left| {\begin{array}{*{20}{c}}
1&{yz}&{y + z} \\
0&{zx - yz}&{\left( {z + x} \right) - \left( {y + z} \right)} \\
0&{xy - yz}&{\left( {x + y} \right) - \left( {y + z} \right)}
\end{array}} \right|$
Take $z$ common from 2nd column of 2nd row, $y$ from 2nd column of 3rd row and simplify the 3rd column,
$\left| {\begin{array}{*{20}{c}}
1&{yz}&{y + z} \\
0&{z\left( {x - y} \right)}&{x - y} \\
0&{y\left( {x - z} \right)}&{x - z}
\end{array}} \right|$
Take out $\left( {x - y} \right)$ common from 2nd row and $\left( {x - z} \right)$ from 3rd row.
$\left( {x - y} \right)\left( {x - z} \right)\left| {\begin{array}{*{20}{c}}
1&{yz}&{y + z} \\
0&z&1 \\
0&y&1
\end{array}} \right|$
Solve the determinant along the first column (${C_1}$),
$\left( {x - y} \right)\left( {x - z} \right)\left[ {1\left( {\left| {\begin{array}{*{20}{c}}
z&1 \\
y&1
\end{array}} \right|} \right) - 0 + 0} \right]$
Solve the determinant inside the bracket,
$\left( {x - y} \right)\left( {x - z} \right)\left( {z - y} \right)$ ….. (1)
Now, take L.H.S. and simplify it.
$\left| {\begin{array}{*{20}{c}}
1&x&{{x^2}} \\
1&y&{{y^2}} \\
1&z&{{z^2}}
\end{array}} \right|$
Subtract row 1 from row 2 and row 3,
$\begin{gathered}
{R_2} \to {R_2} - {R_1} \\
{R_3} \to {R_3} - {R_1} \\
\end{gathered} $
$\left| {\begin{array}{*{20}{c}}
1&x&{{x^2}} \\
0&{y - x}&{{y^2} - {x^2}} \\
0&{z - x}&{{z^2} - {x^2}}
\end{array}} \right|$
Take out $\left( {y - x} \right)$ common from 2nd row and $\left( {z - x} \right)$ from 3rd row.
$\left( {y - x} \right)\left( {z - x} \right)\left| {\begin{array}{*{20}{c}}
1&x&{{x^2}} \\
0&1&{y + x} \\
0&1&{z + x}
\end{array}} \right|$
Solve the determinant along the first column (${C_1}$),
$\left( {y - x} \right)\left( {z - x} \right)\left[ {1\left( {\left| {\begin{array}{*{20}{c}}
1&{y + x} \\
1&{z + x}
\end{array}} \right|} \right) - 0 + 0} \right]$
Solve the determinant inside the bracket,
$\left( {x - y} \right)\left( {x - z} \right)\left[ {\left( {z + x} \right) - \left( {y + x} \right)} \right]$
Solve the variables inside the bracket,
$\left( {x - y} \right)\left( {x - z} \right)\left( {z - y} \right)$ ….. (2)
Since the value of equation (1) and (2) are equal.
Hence, $\left| {\begin{array}{*{20}{c}}
1&{yz}&{y + z} \\
1&{zx}&{z + x} \\
1&{xy}&{x + y}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
1&x&{{x^2}} \\
1&y&{{y^2}} \\
1&z&{{z^2}}
\end{array}} \right|$.
Note: Determinant, in linear and multilinear algebra, a value, denoted det A, associated with a square matrix A of n rows and n columns.
The determinant of a matrix A is commonly denoted det(A) or |A|
A $k \times k$ determinant $\left| {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}& \cdots &{{a_{1k}}} \\
{{a_{21}}}&{{a_{22}}}& \cdots &{{a_{2k}}} \\
\vdots & \vdots & \ddots & \vdots \\
{{a_{k1}}}&{{a_{k2}}}& \cdots &{{a_{kk}}}
\end{array}} \right|$ can be expanded "by minors" to obtain
\[{a_{11}}\left| {\begin{array}{*{20}{c}}
{{a_{22}}}&{{a_{23}}}& \cdots &{{a_{2k}}} \\
\vdots & \vdots & \ddots & \vdots \\
{{a_{k2}}}&{{a_{k3}}}& \cdots &{{a_{kk}}}
\end{array}} \right| - {a_{12}}\left| {\begin{array}{*{20}{c}}
{{a_{21}}}&{{a_{23}}}& \cdots &{{a_{2k}}} \\
\vdots & \vdots & \ddots & \vdots \\
{{a_{k1}}}&{{a_{k3}}}& \cdots &{{a_{kk}}}
\end{array}} \right| + \ldots \pm {a_{1k}}\left| {\begin{array}{*{20}{c}}
{{a_{21}}}&{{a_{22}}}& \cdots &{{a_{2\left( {k - 1} \right)}}} \\
\vdots & \vdots & \ddots & \vdots \\
{{a_{k1}}}&{{a_{k2}}}& \cdots &{{a_{k\left( {k - 1} \right)}}}
\end{array}} \right|\]
Complete step-by-step answer:
Take L.H.S. and simplify it.
$\left| {\begin{array}{*{20}{c}}
1&{yz}&{y + z} \\
1&{zx}&{z + x} \\
1&{xy}&{x + y}
\end{array}} \right|$
Subtract row 1 from row 2 and row 3,
$\begin{gathered}
{R_2} \to {R_2} - {R_1} \\
{R_3} \to {R_3} - {R_1} \\
\end{gathered} $
$\left| {\begin{array}{*{20}{c}}
1&{yz}&{y + z} \\
0&{zx - yz}&{\left( {z + x} \right) - \left( {y + z} \right)} \\
0&{xy - yz}&{\left( {x + y} \right) - \left( {y + z} \right)}
\end{array}} \right|$
Take $z$ common from 2nd column of 2nd row, $y$ from 2nd column of 3rd row and simplify the 3rd column,
$\left| {\begin{array}{*{20}{c}}
1&{yz}&{y + z} \\
0&{z\left( {x - y} \right)}&{x - y} \\
0&{y\left( {x - z} \right)}&{x - z}
\end{array}} \right|$
Take out $\left( {x - y} \right)$ common from 2nd row and $\left( {x - z} \right)$ from 3rd row.
$\left( {x - y} \right)\left( {x - z} \right)\left| {\begin{array}{*{20}{c}}
1&{yz}&{y + z} \\
0&z&1 \\
0&y&1
\end{array}} \right|$
Solve the determinant along the first column (${C_1}$),
$\left( {x - y} \right)\left( {x - z} \right)\left[ {1\left( {\left| {\begin{array}{*{20}{c}}
z&1 \\
y&1
\end{array}} \right|} \right) - 0 + 0} \right]$
Solve the determinant inside the bracket,
$\left( {x - y} \right)\left( {x - z} \right)\left( {z - y} \right)$ ….. (1)
Now, take L.H.S. and simplify it.
$\left| {\begin{array}{*{20}{c}}
1&x&{{x^2}} \\
1&y&{{y^2}} \\
1&z&{{z^2}}
\end{array}} \right|$
Subtract row 1 from row 2 and row 3,
$\begin{gathered}
{R_2} \to {R_2} - {R_1} \\
{R_3} \to {R_3} - {R_1} \\
\end{gathered} $
$\left| {\begin{array}{*{20}{c}}
1&x&{{x^2}} \\
0&{y - x}&{{y^2} - {x^2}} \\
0&{z - x}&{{z^2} - {x^2}}
\end{array}} \right|$
Take out $\left( {y - x} \right)$ common from 2nd row and $\left( {z - x} \right)$ from 3rd row.
$\left( {y - x} \right)\left( {z - x} \right)\left| {\begin{array}{*{20}{c}}
1&x&{{x^2}} \\
0&1&{y + x} \\
0&1&{z + x}
\end{array}} \right|$
Solve the determinant along the first column (${C_1}$),
$\left( {y - x} \right)\left( {z - x} \right)\left[ {1\left( {\left| {\begin{array}{*{20}{c}}
1&{y + x} \\
1&{z + x}
\end{array}} \right|} \right) - 0 + 0} \right]$
Solve the determinant inside the bracket,
$\left( {x - y} \right)\left( {x - z} \right)\left[ {\left( {z + x} \right) - \left( {y + x} \right)} \right]$
Solve the variables inside the bracket,
$\left( {x - y} \right)\left( {x - z} \right)\left( {z - y} \right)$ ….. (2)
Since the value of equation (1) and (2) are equal.
Hence, $\left| {\begin{array}{*{20}{c}}
1&{yz}&{y + z} \\
1&{zx}&{z + x} \\
1&{xy}&{x + y}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
1&x&{{x^2}} \\
1&y&{{y^2}} \\
1&z&{{z^2}}
\end{array}} \right|$.
Note: Determinant, in linear and multilinear algebra, a value, denoted det A, associated with a square matrix A of n rows and n columns.
The determinant of a matrix A is commonly denoted det(A) or |A|
A $k \times k$ determinant $\left| {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}& \cdots &{{a_{1k}}} \\
{{a_{21}}}&{{a_{22}}}& \cdots &{{a_{2k}}} \\
\vdots & \vdots & \ddots & \vdots \\
{{a_{k1}}}&{{a_{k2}}}& \cdots &{{a_{kk}}}
\end{array}} \right|$ can be expanded "by minors" to obtain
\[{a_{11}}\left| {\begin{array}{*{20}{c}}
{{a_{22}}}&{{a_{23}}}& \cdots &{{a_{2k}}} \\
\vdots & \vdots & \ddots & \vdots \\
{{a_{k2}}}&{{a_{k3}}}& \cdots &{{a_{kk}}}
\end{array}} \right| - {a_{12}}\left| {\begin{array}{*{20}{c}}
{{a_{21}}}&{{a_{23}}}& \cdots &{{a_{2k}}} \\
\vdots & \vdots & \ddots & \vdots \\
{{a_{k1}}}&{{a_{k3}}}& \cdots &{{a_{kk}}}
\end{array}} \right| + \ldots \pm {a_{1k}}\left| {\begin{array}{*{20}{c}}
{{a_{21}}}&{{a_{22}}}& \cdots &{{a_{2\left( {k - 1} \right)}}} \\
\vdots & \vdots & \ddots & \vdots \\
{{a_{k1}}}&{{a_{k2}}}& \cdots &{{a_{k\left( {k - 1} \right)}}}
\end{array}} \right|\]
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

