
Show that \[\int\limits_{ - a}^a {f(x)dx = \left\{ {\begin{array}{*{20}{c}}
{2\int\limits_0^a {f(x)dx,\,if\,f(x){\text{ is an even function}}} } \\
{0,\,if\,f(x){\text{ is a odd function}}}
\end{array}} \right.} \]
Answer
512.7k+ views
Hint: To solve this problem we should know about the following term:
Condition for checking whether its function is odd: The integrand of an odd function over a symmetric interval is zero. This is because the region below the x-axis is symmetric to the region above the x-axis.
Condition for checking whether its function is Even: if integration for a function over a symmetrical interval will equal to twice of integrand for the same function over half of interval. Then this will be an even function.
First check if the interval is symmetric or not. Then we will do integration of a given function of a given function as per given interval then by observing the result we can define whether the function is odd or even.
Complete step by step answer:
Given
Let $I = \int\limits_{ - a}^a {f\{ x\} dx} $
$I = \int\limits_{ - a}^0 {f\{ x\} dx} + \int\limits_0^a {f\{ x\} dx} $
Now if $f\{ x\} $ is even, $f\{ x\} = f\{ - x\} $
$I = \int\limits_{ - a}^0 {f\{ x\} dx} + \int\limits_0^a {f\{ x\} dx} $
$\Rightarrow I = \int\limits_{ - ( - a)}^{ - 0} {f\{ - x\} \{ - dx\} } + \int\limits_0^a {f\{ x\} dx} $
(Substituting$x\,by\, - x$)
$\Rightarrow I = \int\limits_0^a {f\{ - x\} dx} + \int\limits_0^a {f\{ x\} dx} $
But $f\{ x\} = f\{ - x\} $
$\Rightarrow I = \int\limits_0^a {f\{ x\} dx} + \int\limits_0^a {f\{ x\} dx} $
\[\Rightarrow I = 2\int\limits_0^a {f\{ x\} dx} \] if $f\{ x\} $ is an even.
Now
If $f\{ x\} $ is an odd, $f\{ x\} = - f\{ - x\} $
$I = \int\limits_{ - a}^0 {f\{ x\} dx} + \int\limits_0^a {f\{ x\} dx} $
$\Rightarrow I = \int\limits_{ - ( - a)}^{ - 0} {f\{ - x\} \{ - dx\} } + \int\limits_0^a {f\{ x\} dx} $
Substituting $x\,by\, - x$
$ I = \int\limits_0^a {f\{ - x\} dx} + \int\limits_0^a {f\{ x\} dx} $
But $f\{ x\} = - f\{ - x\} $
$\Rightarrow I = - \int\limits_0^a {f\{ x\} dx} + \int\limits_0^a {f\{ x\} dx} $
$\therefore I = 0\,if\,f\{ x\} \,$is odd.
Hence proved.
Note:Differentiation is a method of finding the derivative of a function. Differentiation is a process, in Maths, where we find the instantaneous rate of change in function based on one of its variables. Theorem If $f\{ x\} $ is a continuous function on the closed, bounded interval [a,b], then f is integrable on [a,b]. ... If $f\{ x\} $ is continuous on the closed, bounded interval [a,b] then f is uniformly continuous on [a,b].
Condition for checking whether its function is odd: The integrand of an odd function over a symmetric interval is zero. This is because the region below the x-axis is symmetric to the region above the x-axis.
Condition for checking whether its function is Even: if integration for a function over a symmetrical interval will equal to twice of integrand for the same function over half of interval. Then this will be an even function.
First check if the interval is symmetric or not. Then we will do integration of a given function of a given function as per given interval then by observing the result we can define whether the function is odd or even.
Complete step by step answer:
Given
Let $I = \int\limits_{ - a}^a {f\{ x\} dx} $
$I = \int\limits_{ - a}^0 {f\{ x\} dx} + \int\limits_0^a {f\{ x\} dx} $
Now if $f\{ x\} $ is even, $f\{ x\} = f\{ - x\} $
$I = \int\limits_{ - a}^0 {f\{ x\} dx} + \int\limits_0^a {f\{ x\} dx} $
$\Rightarrow I = \int\limits_{ - ( - a)}^{ - 0} {f\{ - x\} \{ - dx\} } + \int\limits_0^a {f\{ x\} dx} $
(Substituting$x\,by\, - x$)
$\Rightarrow I = \int\limits_0^a {f\{ - x\} dx} + \int\limits_0^a {f\{ x\} dx} $
But $f\{ x\} = f\{ - x\} $
$\Rightarrow I = \int\limits_0^a {f\{ x\} dx} + \int\limits_0^a {f\{ x\} dx} $
\[\Rightarrow I = 2\int\limits_0^a {f\{ x\} dx} \] if $f\{ x\} $ is an even.
Now
If $f\{ x\} $ is an odd, $f\{ x\} = - f\{ - x\} $
$I = \int\limits_{ - a}^0 {f\{ x\} dx} + \int\limits_0^a {f\{ x\} dx} $
$\Rightarrow I = \int\limits_{ - ( - a)}^{ - 0} {f\{ - x\} \{ - dx\} } + \int\limits_0^a {f\{ x\} dx} $
Substituting $x\,by\, - x$
$ I = \int\limits_0^a {f\{ - x\} dx} + \int\limits_0^a {f\{ x\} dx} $
But $f\{ x\} = - f\{ - x\} $
$\Rightarrow I = - \int\limits_0^a {f\{ x\} dx} + \int\limits_0^a {f\{ x\} dx} $
$\therefore I = 0\,if\,f\{ x\} \,$is odd.
Hence proved.
Note:Differentiation is a method of finding the derivative of a function. Differentiation is a process, in Maths, where we find the instantaneous rate of change in function based on one of its variables. Theorem If $f\{ x\} $ is a continuous function on the closed, bounded interval [a,b], then f is integrable on [a,b]. ... If $f\{ x\} $ is continuous on the closed, bounded interval [a,b] then f is uniformly continuous on [a,b].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

