
Show that $\int{\csc xdx}=\ln \left| \tan \left( \dfrac{x}{2} \right) \right|+c$?
Answer
491.1k+ views
Hint: We first change the given expression of $\csc x$ to $\dfrac{\csc x\left( \csc x-\cot x \right)}{\left( \csc x-\cot x \right)}$ by multiplying $\left( \csc x-\cot x \right)$ to both its numerator and denominator. We change the variable from the assumption of $\left( \csc x-\cot x \right)=z$. The differential gives $\left( {{\csc }^{2}}x-\cot x\csc x \right)dx=dz$. We change the function and find the solution of the integral. We then sue the formulas of submultiple $1-\cos x=2{{\sin }^{2}}\dfrac{x}{2}$ and $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$ to get the final solution.
Complete step by step answer:
We first change the given function of $\csc x$ to $\dfrac{\csc x\left( \csc x-\cot x \right)}{\left( \csc x-\cot x \right)}$ by multiplying $\left( \csc x-\cot x \right)$ to both its numerator and denominator.
We get $\csc x=\dfrac{\csc x\left( \csc x-\cot x \right)}{\left( \csc x-\cot x \right)}=\dfrac{{{\csc }^{2}}x-\csc x\cot x}{\left( \csc x-\cot x \right)}$.
We take $\left( \csc x-\cot x \right)=z$.
Differentiating we get
$\begin{align}
& \left( \csc x-\cot x \right)=z \\
& \Rightarrow \left( {{\csc }^{2}}x-\cot x\csc x \right)dx=dz \\
\end{align}$
So, we get
\[\begin{align}
& \int{\csc xdx} \\
& =\int{\dfrac{{{\csc }^{2}}x-\csc x\cot x}{\left( \csc x-\cot x \right)}dx} \\
& =\int{\dfrac{dz}{z}} \\
& =\log \left| z \right|+c \\
\end{align}\]
We replace the values and get $\int{\csc xdx}=\ln \left| \csc x-\cot x \right|+c$.
Now we simplify the function $\csc x-\cot x$.
$\csc x-\cot x=\dfrac{1}{\sin x}-\dfrac{\cos x}{\sin x}=\dfrac{1-\cos x}{\sin x}$
We use the formulas of submultiple and get $1-\cos x=2{{\sin }^{2}}\dfrac{x}{2}$ and $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$.
$\dfrac{1-\cos x}{\sin x}=\dfrac{2{{\sin }^{2}}\dfrac{x}{2}}{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}=\tan \dfrac{x}{2}$.
Therefore, $\int{\csc xdx}=\ln \left| \csc x-\cot x \right|+c=\ln \left| \tan \dfrac{x}{2} \right|+c$
Note: Although for elementary knowledge the principal domain is enough to solve the problem. But if mentioned to find the general solution then the domain changes to $-\infty \le x\le \infty $. In that case we have to use the formula $x=n\pi +{{\left( -1 \right)}^{n}}a$ for $\sin \left( x \right)=\sin a$ where $-\dfrac{\pi }{2}\le a\le \dfrac{\pi }{2}$. For our given problem $\sin \dfrac{x}{2}\ne 0$, the primary solution is $x\ne 0$. The condition will be $x\ne n\pi $. Here $n\in \mathbb{Z}$.
Complete step by step answer:
We first change the given function of $\csc x$ to $\dfrac{\csc x\left( \csc x-\cot x \right)}{\left( \csc x-\cot x \right)}$ by multiplying $\left( \csc x-\cot x \right)$ to both its numerator and denominator.
We get $\csc x=\dfrac{\csc x\left( \csc x-\cot x \right)}{\left( \csc x-\cot x \right)}=\dfrac{{{\csc }^{2}}x-\csc x\cot x}{\left( \csc x-\cot x \right)}$.
We take $\left( \csc x-\cot x \right)=z$.
Differentiating we get
$\begin{align}
& \left( \csc x-\cot x \right)=z \\
& \Rightarrow \left( {{\csc }^{2}}x-\cot x\csc x \right)dx=dz \\
\end{align}$
So, we get
\[\begin{align}
& \int{\csc xdx} \\
& =\int{\dfrac{{{\csc }^{2}}x-\csc x\cot x}{\left( \csc x-\cot x \right)}dx} \\
& =\int{\dfrac{dz}{z}} \\
& =\log \left| z \right|+c \\
\end{align}\]
We replace the values and get $\int{\csc xdx}=\ln \left| \csc x-\cot x \right|+c$.
Now we simplify the function $\csc x-\cot x$.
$\csc x-\cot x=\dfrac{1}{\sin x}-\dfrac{\cos x}{\sin x}=\dfrac{1-\cos x}{\sin x}$
We use the formulas of submultiple and get $1-\cos x=2{{\sin }^{2}}\dfrac{x}{2}$ and $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$.
$\dfrac{1-\cos x}{\sin x}=\dfrac{2{{\sin }^{2}}\dfrac{x}{2}}{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}=\tan \dfrac{x}{2}$.
Therefore, $\int{\csc xdx}=\ln \left| \csc x-\cot x \right|+c=\ln \left| \tan \dfrac{x}{2} \right|+c$
Note: Although for elementary knowledge the principal domain is enough to solve the problem. But if mentioned to find the general solution then the domain changes to $-\infty \le x\le \infty $. In that case we have to use the formula $x=n\pi +{{\left( -1 \right)}^{n}}a$ for $\sin \left( x \right)=\sin a$ where $-\dfrac{\pi }{2}\le a\le \dfrac{\pi }{2}$. For our given problem $\sin \dfrac{x}{2}\ne 0$, the primary solution is $x\ne 0$. The condition will be $x\ne n\pi $. Here $n\in \mathbb{Z}$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

