
Show that \[\dfrac{1}{{\left( {\csc A - \cot A} \right)}} - \dfrac{1}{{\sin A}} = \dfrac{1}{{\sin A}} - \dfrac{1}{{\left( {\csc A + \cot A} \right)}}\]
Answer
524.4k+ views
Hint: Here we need to prove the given problem. We simplify the left hand side of the equation and the right hand side of the equation and we show that both are equal. To solve this we use the concept of reciprocal and definition of cotangent. We know that cosec reciprocal is sine function and cotangent is ratio of cosine to sine function.
Complete step by step solution:
Now take
\[L.H.S = \dfrac{1}{{\left( {\csc A - \cot A} \right)}} - \dfrac{1}{{\sin A}}\] and \[R.H.S = \dfrac{1}{{\sin A}} - \dfrac{1}{{\left( {\csc A + \cot A} \right)}}\].
Now take LHS
\[L.H.S = \dfrac{1}{{\left( {\csc A - \cot A} \right)}} - \dfrac{1}{{\sin A}}\].
We know \[\csc A = \dfrac{1}{{\sin A}}\] and \[\cot A = \dfrac{{\cos A}}{{\sin A}}\],
\[L.H.S = \dfrac{1}{{\left( {\dfrac{1}{{\sin A}} - \dfrac{{\cos A}}{{\sin A}}} \right)}} - \dfrac{1}{{\sin A}}\]
\[L.H.S = \dfrac{1}{{\left( {\dfrac{{1 - \cos A}}{{\sin A}}} \right)}} - \dfrac{1}{{\sin A}}\]
\[L.H.S = \dfrac{{\sin A}}{{\left( {1 - \cos A} \right)}} - \dfrac{1}{{\sin A}}\]
Again taking LCM and simplifying we have,
\[L.H.S = \dfrac{{\sin A.\sin A - \left( {1 - \cos A} \right)}}{{\sin A.\left( {1 - \cos A} \right)}}\]
\[L.H.S = \dfrac{{{{\sin }^2}A - \left( {1 - \cos A} \right)}}{{\sin A.\left( {1 - \cos A} \right)}}\]
We know the trigonometric identity, \[{\sin ^2}A + {\cos ^2}A = 1\] using this we have,
\[L.H.S = \dfrac{{\left( {1 - {{\cos }^2}A} \right) - \left( {1 - \cos A} \right)}}{{\sin A.\left( {1 - \cos A} \right)}}\]
\[L.H.S = \dfrac{{\left( {{1^2} - {{\cos }^2}A} \right) - \left( {1 - \cos A} \right)}}{{\sin A.\left( {1 - \cos A} \right)}}\]
Now Applying the identity \[{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\].
\[L.H.S = \dfrac{{\left( {\left( {1 - \cos A} \right)\left( {1 + \cos A} \right)} \right) - \left( {1 - \cos A} \right)}}{{\sin A.\left( {1 - \cos A} \right)}}\]
Taking \[1 - \cos A\] common,
\[L.H.S = \dfrac{{\left( {1 - \cos A} \right)\left( {\left( {1 + \cos A} \right) - 1} \right)}}{{\sin A.\left( {1 - \cos A} \right)}}\]
\[L.H.S = \dfrac{{\cos A}}{{\sin A.}}\]
We know that cotangent is ratio of cosine to tangent,
\[ \Rightarrow L.H.S = \cot A - - (1)\]
Now take RHS,
\[R.H.S = \dfrac{1}{{\sin A}} - \dfrac{1}{{\left( {\csc A + \cot A} \right)}}\]
We are going simplify this easily using the identity \[{\csc ^2}A - {\cot ^2}A = 1\]
\[R.H.S = \dfrac{1}{{\sin A}} - \dfrac{{{{\csc }^2}A - {{\cot }^2}A}}{{\left( {\csc A + \cot A} \right)}}\]
\[R.H.S = \dfrac{1}{{\sin A}} - \dfrac{{\left( {\csc A - \cot A} \right)\left( {\csc A + \cot A} \right)}}{{\left( {\csc A + \cot A} \right)}}\]
\[R.H.S = \dfrac{1}{{\sin A}} - \csc A + \cot A\]
We also have \[\csc A = \dfrac{1}{{\sin A}}\] , then
\[R.H.S = \csc A - \csc A + \cot A\]
\[ \Rightarrow R.H.S = \cot A - - (2)\]
From (1) and (2) we have
\[ \Rightarrow \dfrac{1}{{\left( {\csc A - \cot A} \right)}} - \dfrac{1}{{\sin A}} = \dfrac{1}{{\sin A}} - \dfrac{1}{{\left( {\csc A + \cot A} \right)}}\].
We can also simplify the LHS as we did in RHS.
Note: Sine, cosine, tangent, cosecant, secant and cotangent are the six types of trigonometric functions; sine, cosine and tangent are the main functions while cosecant, secant and cotangent are the reciprocal of sine, cosine and tangent respectively.
Complete step by step solution:
Now take
\[L.H.S = \dfrac{1}{{\left( {\csc A - \cot A} \right)}} - \dfrac{1}{{\sin A}}\] and \[R.H.S = \dfrac{1}{{\sin A}} - \dfrac{1}{{\left( {\csc A + \cot A} \right)}}\].
Now take LHS
\[L.H.S = \dfrac{1}{{\left( {\csc A - \cot A} \right)}} - \dfrac{1}{{\sin A}}\].
We know \[\csc A = \dfrac{1}{{\sin A}}\] and \[\cot A = \dfrac{{\cos A}}{{\sin A}}\],
\[L.H.S = \dfrac{1}{{\left( {\dfrac{1}{{\sin A}} - \dfrac{{\cos A}}{{\sin A}}} \right)}} - \dfrac{1}{{\sin A}}\]
\[L.H.S = \dfrac{1}{{\left( {\dfrac{{1 - \cos A}}{{\sin A}}} \right)}} - \dfrac{1}{{\sin A}}\]
\[L.H.S = \dfrac{{\sin A}}{{\left( {1 - \cos A} \right)}} - \dfrac{1}{{\sin A}}\]
Again taking LCM and simplifying we have,
\[L.H.S = \dfrac{{\sin A.\sin A - \left( {1 - \cos A} \right)}}{{\sin A.\left( {1 - \cos A} \right)}}\]
\[L.H.S = \dfrac{{{{\sin }^2}A - \left( {1 - \cos A} \right)}}{{\sin A.\left( {1 - \cos A} \right)}}\]
We know the trigonometric identity, \[{\sin ^2}A + {\cos ^2}A = 1\] using this we have,
\[L.H.S = \dfrac{{\left( {1 - {{\cos }^2}A} \right) - \left( {1 - \cos A} \right)}}{{\sin A.\left( {1 - \cos A} \right)}}\]
\[L.H.S = \dfrac{{\left( {{1^2} - {{\cos }^2}A} \right) - \left( {1 - \cos A} \right)}}{{\sin A.\left( {1 - \cos A} \right)}}\]
Now Applying the identity \[{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\].
\[L.H.S = \dfrac{{\left( {\left( {1 - \cos A} \right)\left( {1 + \cos A} \right)} \right) - \left( {1 - \cos A} \right)}}{{\sin A.\left( {1 - \cos A} \right)}}\]
Taking \[1 - \cos A\] common,
\[L.H.S = \dfrac{{\left( {1 - \cos A} \right)\left( {\left( {1 + \cos A} \right) - 1} \right)}}{{\sin A.\left( {1 - \cos A} \right)}}\]
\[L.H.S = \dfrac{{\cos A}}{{\sin A.}}\]
We know that cotangent is ratio of cosine to tangent,
\[ \Rightarrow L.H.S = \cot A - - (1)\]
Now take RHS,
\[R.H.S = \dfrac{1}{{\sin A}} - \dfrac{1}{{\left( {\csc A + \cot A} \right)}}\]
We are going simplify this easily using the identity \[{\csc ^2}A - {\cot ^2}A = 1\]
\[R.H.S = \dfrac{1}{{\sin A}} - \dfrac{{{{\csc }^2}A - {{\cot }^2}A}}{{\left( {\csc A + \cot A} \right)}}\]
\[R.H.S = \dfrac{1}{{\sin A}} - \dfrac{{\left( {\csc A - \cot A} \right)\left( {\csc A + \cot A} \right)}}{{\left( {\csc A + \cot A} \right)}}\]
\[R.H.S = \dfrac{1}{{\sin A}} - \csc A + \cot A\]
We also have \[\csc A = \dfrac{1}{{\sin A}}\] , then
\[R.H.S = \csc A - \csc A + \cot A\]
\[ \Rightarrow R.H.S = \cot A - - (2)\]
From (1) and (2) we have
\[ \Rightarrow \dfrac{1}{{\left( {\csc A - \cot A} \right)}} - \dfrac{1}{{\sin A}} = \dfrac{1}{{\sin A}} - \dfrac{1}{{\left( {\csc A + \cot A} \right)}}\].
We can also simplify the LHS as we did in RHS.
Note: Sine, cosine, tangent, cosecant, secant and cotangent are the six types of trigonometric functions; sine, cosine and tangent are the main functions while cosecant, secant and cotangent are the reciprocal of sine, cosine and tangent respectively.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

