Answer
Verified
492.9k+ views
Hint – In this question apply some basic properties of trigonometric identities such as $2\cos C\cos D = \cos \left( {C + D} \right) + \cos \left( {C - D} \right),$$\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }},{\text{ }}\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ to reach the solution of the question.
Given equation is
$\cot \left( {A + {{15}^0}} \right) - \tan \left( {A - {{15}^0}} \right) = \dfrac{{4\cos 2A}}{{1 + \sin 2A}}$
Consider L.H.S
$ = \cot \left( {A + {{15}^0}} \right) - \tan \left( {A - {{15}^0}} \right)$
As we know $\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }},{\text{ }}\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ , so apply these properties in the above equation we have,
\[ = \dfrac{{\cos \left( {A + {{15}^0}} \right)}}{{\sin \left( {A + {{15}^0}} \right)}} - \dfrac{{\sin \left( {A - {{15}^0}} \right)}}{{\cos \left( {A - {{15}^0}} \right)}} = \dfrac{{\cos \left( {A + {{15}^0}} \right)\cos \left( {A - {{15}^0}} \right) - \sin \left( {A + {{15}^0}} \right)\sin \left( {A - {{15}^0}} \right)}}{{\cos \left( {A - {{15}^0}} \right)\sin \left( {A + {{15}^0}} \right)}}\]
Now multiply and divide by 2 in above equation we have
\[ = \dfrac{{2\cos \left( {A + {{15}^0}} \right)\cos \left( {A - {{15}^0}} \right) - 2\sin \left( {A + {{15}^0}} \right)\sin \left( {A - {{15}^0}} \right)}}{{2\cos \left( {A - {{15}^0}} \right)\sin \left( {A + {{15}^0}} \right)}}\]
Now we all know that
$
2\cos C\cos D = \cos \left( {C + D} \right) + \cos \left( {C - D} \right), \\
2\sin C\sin D = \cos \left( {C - D} \right) - \cos \left( {C + D} \right){\text{ and}} \\
2\cos C\sin D = \sin \left( {C + D} \right) - \sin \left( {C - D} \right) \\
$
So, apply these properties in above equation we have,
\[ = \dfrac{{\cos \left( {2A} \right) + \cos \left( {{{30}^0}} \right) - \left( {\cos \left( {{{30}^0}} \right) - \cos \left( {2{A^0}} \right)} \right)}}{{\sin \left( {2A} \right) - \sin \left( { - {{30}^0}} \right)}}\]
Now as we know that $\sin \left( { - \theta } \right) = - \sin \theta $ , so apply this property in the above equation we have,
$ = \dfrac{{2\cos 2A}}{{\sin \left( {2A} \right) + \sin \left( {{{30}^0}} \right)}}$
Now we all know that $\sin {30^0} = \dfrac{1}{2}$
$ = \cot \left( {A + {{15}^0}} \right) - \tan \left( {A - {{15}^0}} \right) = = \dfrac{{2\cos 2A}}{{\sin \left( {2A} \right) + \dfrac{1}{2}}} = \dfrac{{4\cos 2A}}{{2\sin 2A + 1}}$
= R.H.S
Hence Proved
Note – In such types of questions the key concept we have to remember is that always recall all the properties of trigonometric identities which is all stated above then using these properties simplify the L.H.S part of the given equation we will get the required R.H.S part of the equation.
Given equation is
$\cot \left( {A + {{15}^0}} \right) - \tan \left( {A - {{15}^0}} \right) = \dfrac{{4\cos 2A}}{{1 + \sin 2A}}$
Consider L.H.S
$ = \cot \left( {A + {{15}^0}} \right) - \tan \left( {A - {{15}^0}} \right)$
As we know $\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }},{\text{ }}\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ , so apply these properties in the above equation we have,
\[ = \dfrac{{\cos \left( {A + {{15}^0}} \right)}}{{\sin \left( {A + {{15}^0}} \right)}} - \dfrac{{\sin \left( {A - {{15}^0}} \right)}}{{\cos \left( {A - {{15}^0}} \right)}} = \dfrac{{\cos \left( {A + {{15}^0}} \right)\cos \left( {A - {{15}^0}} \right) - \sin \left( {A + {{15}^0}} \right)\sin \left( {A - {{15}^0}} \right)}}{{\cos \left( {A - {{15}^0}} \right)\sin \left( {A + {{15}^0}} \right)}}\]
Now multiply and divide by 2 in above equation we have
\[ = \dfrac{{2\cos \left( {A + {{15}^0}} \right)\cos \left( {A - {{15}^0}} \right) - 2\sin \left( {A + {{15}^0}} \right)\sin \left( {A - {{15}^0}} \right)}}{{2\cos \left( {A - {{15}^0}} \right)\sin \left( {A + {{15}^0}} \right)}}\]
Now we all know that
$
2\cos C\cos D = \cos \left( {C + D} \right) + \cos \left( {C - D} \right), \\
2\sin C\sin D = \cos \left( {C - D} \right) - \cos \left( {C + D} \right){\text{ and}} \\
2\cos C\sin D = \sin \left( {C + D} \right) - \sin \left( {C - D} \right) \\
$
So, apply these properties in above equation we have,
\[ = \dfrac{{\cos \left( {2A} \right) + \cos \left( {{{30}^0}} \right) - \left( {\cos \left( {{{30}^0}} \right) - \cos \left( {2{A^0}} \right)} \right)}}{{\sin \left( {2A} \right) - \sin \left( { - {{30}^0}} \right)}}\]
Now as we know that $\sin \left( { - \theta } \right) = - \sin \theta $ , so apply this property in the above equation we have,
$ = \dfrac{{2\cos 2A}}{{\sin \left( {2A} \right) + \sin \left( {{{30}^0}} \right)}}$
Now we all know that $\sin {30^0} = \dfrac{1}{2}$
$ = \cot \left( {A + {{15}^0}} \right) - \tan \left( {A - {{15}^0}} \right) = = \dfrac{{2\cos 2A}}{{\sin \left( {2A} \right) + \dfrac{1}{2}}} = \dfrac{{4\cos 2A}}{{2\sin 2A + 1}}$
= R.H.S
Hence Proved
Note – In such types of questions the key concept we have to remember is that always recall all the properties of trigonometric identities which is all stated above then using these properties simplify the L.H.S part of the given equation we will get the required R.H.S part of the equation.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
A rainbow has circular shape because A The earth is class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE