
Show that:
$\cot \left( {A + {{15}^0}} \right) - \tan \left( {A - {{15}^0}} \right) = \dfrac{{4\cos 2A}}{{1 + 2\sin 2A}}$
Answer
622.2k+ views
Hint – In this question apply some basic properties of trigonometric identities such as $2\cos C\cos D = \cos \left( {C + D} \right) + \cos \left( {C - D} \right),$$\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }},{\text{ }}\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ to reach the solution of the question.
Given equation is
$\cot \left( {A + {{15}^0}} \right) - \tan \left( {A - {{15}^0}} \right) = \dfrac{{4\cos 2A}}{{1 + \sin 2A}}$
Consider L.H.S
$ = \cot \left( {A + {{15}^0}} \right) - \tan \left( {A - {{15}^0}} \right)$
As we know $\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }},{\text{ }}\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ , so apply these properties in the above equation we have,
\[ = \dfrac{{\cos \left( {A + {{15}^0}} \right)}}{{\sin \left( {A + {{15}^0}} \right)}} - \dfrac{{\sin \left( {A - {{15}^0}} \right)}}{{\cos \left( {A - {{15}^0}} \right)}} = \dfrac{{\cos \left( {A + {{15}^0}} \right)\cos \left( {A - {{15}^0}} \right) - \sin \left( {A + {{15}^0}} \right)\sin \left( {A - {{15}^0}} \right)}}{{\cos \left( {A - {{15}^0}} \right)\sin \left( {A + {{15}^0}} \right)}}\]
Now multiply and divide by 2 in above equation we have
\[ = \dfrac{{2\cos \left( {A + {{15}^0}} \right)\cos \left( {A - {{15}^0}} \right) - 2\sin \left( {A + {{15}^0}} \right)\sin \left( {A - {{15}^0}} \right)}}{{2\cos \left( {A - {{15}^0}} \right)\sin \left( {A + {{15}^0}} \right)}}\]
Now we all know that
$
2\cos C\cos D = \cos \left( {C + D} \right) + \cos \left( {C - D} \right), \\
2\sin C\sin D = \cos \left( {C - D} \right) - \cos \left( {C + D} \right){\text{ and}} \\
2\cos C\sin D = \sin \left( {C + D} \right) - \sin \left( {C - D} \right) \\
$
So, apply these properties in above equation we have,
\[ = \dfrac{{\cos \left( {2A} \right) + \cos \left( {{{30}^0}} \right) - \left( {\cos \left( {{{30}^0}} \right) - \cos \left( {2{A^0}} \right)} \right)}}{{\sin \left( {2A} \right) - \sin \left( { - {{30}^0}} \right)}}\]
Now as we know that $\sin \left( { - \theta } \right) = - \sin \theta $ , so apply this property in the above equation we have,
$ = \dfrac{{2\cos 2A}}{{\sin \left( {2A} \right) + \sin \left( {{{30}^0}} \right)}}$
Now we all know that $\sin {30^0} = \dfrac{1}{2}$
$ = \cot \left( {A + {{15}^0}} \right) - \tan \left( {A - {{15}^0}} \right) = = \dfrac{{2\cos 2A}}{{\sin \left( {2A} \right) + \dfrac{1}{2}}} = \dfrac{{4\cos 2A}}{{2\sin 2A + 1}}$
= R.H.S
Hence Proved
Note – In such types of questions the key concept we have to remember is that always recall all the properties of trigonometric identities which is all stated above then using these properties simplify the L.H.S part of the given equation we will get the required R.H.S part of the equation.
Given equation is
$\cot \left( {A + {{15}^0}} \right) - \tan \left( {A - {{15}^0}} \right) = \dfrac{{4\cos 2A}}{{1 + \sin 2A}}$
Consider L.H.S
$ = \cot \left( {A + {{15}^0}} \right) - \tan \left( {A - {{15}^0}} \right)$
As we know $\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }},{\text{ }}\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ , so apply these properties in the above equation we have,
\[ = \dfrac{{\cos \left( {A + {{15}^0}} \right)}}{{\sin \left( {A + {{15}^0}} \right)}} - \dfrac{{\sin \left( {A - {{15}^0}} \right)}}{{\cos \left( {A - {{15}^0}} \right)}} = \dfrac{{\cos \left( {A + {{15}^0}} \right)\cos \left( {A - {{15}^0}} \right) - \sin \left( {A + {{15}^0}} \right)\sin \left( {A - {{15}^0}} \right)}}{{\cos \left( {A - {{15}^0}} \right)\sin \left( {A + {{15}^0}} \right)}}\]
Now multiply and divide by 2 in above equation we have
\[ = \dfrac{{2\cos \left( {A + {{15}^0}} \right)\cos \left( {A - {{15}^0}} \right) - 2\sin \left( {A + {{15}^0}} \right)\sin \left( {A - {{15}^0}} \right)}}{{2\cos \left( {A - {{15}^0}} \right)\sin \left( {A + {{15}^0}} \right)}}\]
Now we all know that
$
2\cos C\cos D = \cos \left( {C + D} \right) + \cos \left( {C - D} \right), \\
2\sin C\sin D = \cos \left( {C - D} \right) - \cos \left( {C + D} \right){\text{ and}} \\
2\cos C\sin D = \sin \left( {C + D} \right) - \sin \left( {C - D} \right) \\
$
So, apply these properties in above equation we have,
\[ = \dfrac{{\cos \left( {2A} \right) + \cos \left( {{{30}^0}} \right) - \left( {\cos \left( {{{30}^0}} \right) - \cos \left( {2{A^0}} \right)} \right)}}{{\sin \left( {2A} \right) - \sin \left( { - {{30}^0}} \right)}}\]
Now as we know that $\sin \left( { - \theta } \right) = - \sin \theta $ , so apply this property in the above equation we have,
$ = \dfrac{{2\cos 2A}}{{\sin \left( {2A} \right) + \sin \left( {{{30}^0}} \right)}}$
Now we all know that $\sin {30^0} = \dfrac{1}{2}$
$ = \cot \left( {A + {{15}^0}} \right) - \tan \left( {A - {{15}^0}} \right) = = \dfrac{{2\cos 2A}}{{\sin \left( {2A} \right) + \dfrac{1}{2}}} = \dfrac{{4\cos 2A}}{{2\sin 2A + 1}}$
= R.H.S
Hence Proved
Note – In such types of questions the key concept we have to remember is that always recall all the properties of trigonometric identities which is all stated above then using these properties simplify the L.H.S part of the given equation we will get the required R.H.S part of the equation.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

