
Show that :
$\begin{gathered}
\left( i \right)\tan {48^ \circ }\tan {23^ \circ }\tan {42^ \circ }\tan {67^ \circ } = 1 \\
\left( {ii} \right)\cos {38^ \circ }\cos {52^ \circ } - \sin {38^ \circ }\sin {52^ \circ } = 0 \\
\end{gathered} $
Answer
614.1k+ views
Hint:In this question use some basic trigonometric conversions like $\tan \left( {90 - \theta } \right) = \cot \theta $,$\sin \left( {90 - \theta } \right) = \cos \theta $ , $\cos \left( {90 - \theta } \right) = \sin \theta $,$\cot \left( {90 - \theta } \right) = \tan \theta $, $\cot \theta = \dfrac{1}{{\tan \theta }}$.
Complete step-by-step answer:
According to the question
(i) We have $\tan {48^ \circ }\tan {23^ \circ }\tan {42^ \circ }\tan {67^ \circ } = 1$
$LHS = $$\tan {48^ \circ }\tan {23^ \circ }\tan {42^ \circ }\tan {67^ \circ }$
$
= \tan \left( {{{90}^ \circ } - {{42}^ \circ }} \right)\tan {23^ \circ }\tan {42^ \circ }\tan \left( {{{90}^ \circ } - {{23}^ \circ }} \right) \\
= \cot {42^ \circ }\tan {42^ \circ }\tan {23^ \circ }\cot {23^ \circ } \\
= \cot {42^ \circ } \times \dfrac{1}{{\cot {{42}^ \circ }}} \times \tan {23^ \circ } \times \dfrac{1}{{\tan {{23}^ \circ }}} = 1 \\
$
$ = R.H.S.$ Hence , Proved
(ii) We have $\cos {38^ \circ }\cos {52^ \circ } - \sin {38^ \circ }\sin {52^ \circ } = 0$
$LHS = \cos {38^ \circ }\cos {52^ \circ } - \sin {38^ \circ }\sin {52^ \circ }$
$
= \cos \left( {{{90}^ \circ } - {{52}^ \circ }} \right)\cos {52^ \circ } - \sin \left( {{{90}^ \circ } - {{52}^ \circ }} \right)\sin {52^ \circ } \\
= \sin {52^ \circ }\cos {52^ \circ } - \cos {52^ \circ }\sin {52^ \circ } \\
= 0 = RHS \\
$
Hence proved .
Note: It is always advisable to remember some basic conversions while involving trigonometric questions.Students should remember the trigonometric identities and formulas for solving these types of questions.
Complete step-by-step answer:
According to the question
(i) We have $\tan {48^ \circ }\tan {23^ \circ }\tan {42^ \circ }\tan {67^ \circ } = 1$
$LHS = $$\tan {48^ \circ }\tan {23^ \circ }\tan {42^ \circ }\tan {67^ \circ }$
$
= \tan \left( {{{90}^ \circ } - {{42}^ \circ }} \right)\tan {23^ \circ }\tan {42^ \circ }\tan \left( {{{90}^ \circ } - {{23}^ \circ }} \right) \\
= \cot {42^ \circ }\tan {42^ \circ }\tan {23^ \circ }\cot {23^ \circ } \\
= \cot {42^ \circ } \times \dfrac{1}{{\cot {{42}^ \circ }}} \times \tan {23^ \circ } \times \dfrac{1}{{\tan {{23}^ \circ }}} = 1 \\
$
$ = R.H.S.$ Hence , Proved
(ii) We have $\cos {38^ \circ }\cos {52^ \circ } - \sin {38^ \circ }\sin {52^ \circ } = 0$
$LHS = \cos {38^ \circ }\cos {52^ \circ } - \sin {38^ \circ }\sin {52^ \circ }$
$
= \cos \left( {{{90}^ \circ } - {{52}^ \circ }} \right)\cos {52^ \circ } - \sin \left( {{{90}^ \circ } - {{52}^ \circ }} \right)\sin {52^ \circ } \\
= \sin {52^ \circ }\cos {52^ \circ } - \cos {52^ \circ }\sin {52^ \circ } \\
= 0 = RHS \\
$
Hence proved .
Note: It is always advisable to remember some basic conversions while involving trigonometric questions.Students should remember the trigonometric identities and formulas for solving these types of questions.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

