
Show that :
$\begin{gathered}
\left( i \right)\tan {48^ \circ }\tan {23^ \circ }\tan {42^ \circ }\tan {67^ \circ } = 1 \\
\left( {ii} \right)\cos {38^ \circ }\cos {52^ \circ } - \sin {38^ \circ }\sin {52^ \circ } = 0 \\
\end{gathered} $
Answer
517.2k+ views
Hint:In this question use some basic trigonometric conversions like $\tan \left( {90 - \theta } \right) = \cot \theta $,$\sin \left( {90 - \theta } \right) = \cos \theta $ , $\cos \left( {90 - \theta } \right) = \sin \theta $,$\cot \left( {90 - \theta } \right) = \tan \theta $, $\cot \theta = \dfrac{1}{{\tan \theta }}$.
Complete step-by-step answer:
According to the question
(i) We have $\tan {48^ \circ }\tan {23^ \circ }\tan {42^ \circ }\tan {67^ \circ } = 1$
$LHS = $$\tan {48^ \circ }\tan {23^ \circ }\tan {42^ \circ }\tan {67^ \circ }$
$
= \tan \left( {{{90}^ \circ } - {{42}^ \circ }} \right)\tan {23^ \circ }\tan {42^ \circ }\tan \left( {{{90}^ \circ } - {{23}^ \circ }} \right) \\
= \cot {42^ \circ }\tan {42^ \circ }\tan {23^ \circ }\cot {23^ \circ } \\
= \cot {42^ \circ } \times \dfrac{1}{{\cot {{42}^ \circ }}} \times \tan {23^ \circ } \times \dfrac{1}{{\tan {{23}^ \circ }}} = 1 \\
$
$ = R.H.S.$ Hence , Proved
(ii) We have $\cos {38^ \circ }\cos {52^ \circ } - \sin {38^ \circ }\sin {52^ \circ } = 0$
$LHS = \cos {38^ \circ }\cos {52^ \circ } - \sin {38^ \circ }\sin {52^ \circ }$
$
= \cos \left( {{{90}^ \circ } - {{52}^ \circ }} \right)\cos {52^ \circ } - \sin \left( {{{90}^ \circ } - {{52}^ \circ }} \right)\sin {52^ \circ } \\
= \sin {52^ \circ }\cos {52^ \circ } - \cos {52^ \circ }\sin {52^ \circ } \\
= 0 = RHS \\
$
Hence proved .
Note: It is always advisable to remember some basic conversions while involving trigonometric questions.Students should remember the trigonometric identities and formulas for solving these types of questions.
Complete step-by-step answer:
According to the question
(i) We have $\tan {48^ \circ }\tan {23^ \circ }\tan {42^ \circ }\tan {67^ \circ } = 1$
$LHS = $$\tan {48^ \circ }\tan {23^ \circ }\tan {42^ \circ }\tan {67^ \circ }$
$
= \tan \left( {{{90}^ \circ } - {{42}^ \circ }} \right)\tan {23^ \circ }\tan {42^ \circ }\tan \left( {{{90}^ \circ } - {{23}^ \circ }} \right) \\
= \cot {42^ \circ }\tan {42^ \circ }\tan {23^ \circ }\cot {23^ \circ } \\
= \cot {42^ \circ } \times \dfrac{1}{{\cot {{42}^ \circ }}} \times \tan {23^ \circ } \times \dfrac{1}{{\tan {{23}^ \circ }}} = 1 \\
$
$ = R.H.S.$ Hence , Proved
(ii) We have $\cos {38^ \circ }\cos {52^ \circ } - \sin {38^ \circ }\sin {52^ \circ } = 0$
$LHS = \cos {38^ \circ }\cos {52^ \circ } - \sin {38^ \circ }\sin {52^ \circ }$
$
= \cos \left( {{{90}^ \circ } - {{52}^ \circ }} \right)\cos {52^ \circ } - \sin \left( {{{90}^ \circ } - {{52}^ \circ }} \right)\sin {52^ \circ } \\
= \sin {52^ \circ }\cos {52^ \circ } - \cos {52^ \circ }\sin {52^ \circ } \\
= 0 = RHS \\
$
Hence proved .
Note: It is always advisable to remember some basic conversions while involving trigonometric questions.Students should remember the trigonometric identities and formulas for solving these types of questions.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE
