
Show that :
$\begin{gathered}
\left( i \right)\tan {48^ \circ }\tan {23^ \circ }\tan {42^ \circ }\tan {67^ \circ } = 1 \\
\left( {ii} \right)\cos {38^ \circ }\cos {52^ \circ } - \sin {38^ \circ }\sin {52^ \circ } = 0 \\
\end{gathered} $
Answer
601.5k+ views
Hint:In this question use some basic trigonometric conversions like $\tan \left( {90 - \theta } \right) = \cot \theta $,$\sin \left( {90 - \theta } \right) = \cos \theta $ , $\cos \left( {90 - \theta } \right) = \sin \theta $,$\cot \left( {90 - \theta } \right) = \tan \theta $, $\cot \theta = \dfrac{1}{{\tan \theta }}$.
Complete step-by-step answer:
According to the question
(i) We have $\tan {48^ \circ }\tan {23^ \circ }\tan {42^ \circ }\tan {67^ \circ } = 1$
$LHS = $$\tan {48^ \circ }\tan {23^ \circ }\tan {42^ \circ }\tan {67^ \circ }$
$
= \tan \left( {{{90}^ \circ } - {{42}^ \circ }} \right)\tan {23^ \circ }\tan {42^ \circ }\tan \left( {{{90}^ \circ } - {{23}^ \circ }} \right) \\
= \cot {42^ \circ }\tan {42^ \circ }\tan {23^ \circ }\cot {23^ \circ } \\
= \cot {42^ \circ } \times \dfrac{1}{{\cot {{42}^ \circ }}} \times \tan {23^ \circ } \times \dfrac{1}{{\tan {{23}^ \circ }}} = 1 \\
$
$ = R.H.S.$ Hence , Proved
(ii) We have $\cos {38^ \circ }\cos {52^ \circ } - \sin {38^ \circ }\sin {52^ \circ } = 0$
$LHS = \cos {38^ \circ }\cos {52^ \circ } - \sin {38^ \circ }\sin {52^ \circ }$
$
= \cos \left( {{{90}^ \circ } - {{52}^ \circ }} \right)\cos {52^ \circ } - \sin \left( {{{90}^ \circ } - {{52}^ \circ }} \right)\sin {52^ \circ } \\
= \sin {52^ \circ }\cos {52^ \circ } - \cos {52^ \circ }\sin {52^ \circ } \\
= 0 = RHS \\
$
Hence proved .
Note: It is always advisable to remember some basic conversions while involving trigonometric questions.Students should remember the trigonometric identities and formulas for solving these types of questions.
Complete step-by-step answer:
According to the question
(i) We have $\tan {48^ \circ }\tan {23^ \circ }\tan {42^ \circ }\tan {67^ \circ } = 1$
$LHS = $$\tan {48^ \circ }\tan {23^ \circ }\tan {42^ \circ }\tan {67^ \circ }$
$
= \tan \left( {{{90}^ \circ } - {{42}^ \circ }} \right)\tan {23^ \circ }\tan {42^ \circ }\tan \left( {{{90}^ \circ } - {{23}^ \circ }} \right) \\
= \cot {42^ \circ }\tan {42^ \circ }\tan {23^ \circ }\cot {23^ \circ } \\
= \cot {42^ \circ } \times \dfrac{1}{{\cot {{42}^ \circ }}} \times \tan {23^ \circ } \times \dfrac{1}{{\tan {{23}^ \circ }}} = 1 \\
$
$ = R.H.S.$ Hence , Proved
(ii) We have $\cos {38^ \circ }\cos {52^ \circ } - \sin {38^ \circ }\sin {52^ \circ } = 0$
$LHS = \cos {38^ \circ }\cos {52^ \circ } - \sin {38^ \circ }\sin {52^ \circ }$
$
= \cos \left( {{{90}^ \circ } - {{52}^ \circ }} \right)\cos {52^ \circ } - \sin \left( {{{90}^ \circ } - {{52}^ \circ }} \right)\sin {52^ \circ } \\
= \sin {52^ \circ }\cos {52^ \circ } - \cos {52^ \circ }\sin {52^ \circ } \\
= 0 = RHS \\
$
Hence proved .
Note: It is always advisable to remember some basic conversions while involving trigonometric questions.Students should remember the trigonometric identities and formulas for solving these types of questions.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

