
Show that any positive odd integer is of the form $6q+1,6q+3$$,$ or $6q+5$ where q is some integer.
Answer
602.4k+ views
Hint: Use the Euclid’s Division Lemma here which states that if we have two positive integers a and b , then there exist unique integers q and r which satisfy the condition $a=bq+r$ where $0\le r
Complete step-by-step answer:
We will use Euclid’s Division Lemma here which states that if we have two positive integers a and b, then there exist unique integers q and r which satisfy the condition $a=bq+r$ where $0\le r
Now for our question, let a be any odd integer and let $b=6$ . Then according to the Euclid’s Division Lemma, we have the following:
$a=6q+r$ , where since r is the remainder, so $0\le r<6$ .
r can either be 1, 2, 3, 4 or 5.
Now, in the equation, $a=6q+r$ we have \[6q=\] even integer as 6 is an even integer.
If \[r=1\] , our equation becomes $a=6q+1$ .
This is an odd integer as $6q$ is an even number and 1 is an odd number. The sum of an even number and an odd number is always an odd number.
Hence, $a=6q+1$ is an odd integer …(1)
If $r=2$ , our equation becomes $a=6q+2$ $$
This is an even integer as $6q$ is an even number and 2 is an even number. The sum of two even numbers is always an even number.
Hence, $a=6q+2$ is an even integer
If $r=3$ , our equation becomes $a=6q+3$
This is an odd integer as $6q$ is an even number and 3 is an odd number. The sum of an even number and an odd number is always an odd number.
Hence, $a=6q+3$ is an odd integer …(2)
If $r=4$ , our equation becomes $a=6q+4$ $$
This is an even integer as $6q$ is an even number and 4 is an even number. The sum of two even numbers is always an even number.
Hence, $a=6q+4$ is an even integer
If $r=5$, our equation becomes $a=6q+5$
This is an odd integer as $6q$ is an even number and 5 is an odd number. The sum of an even number and an odd number is always an odd number.
Hence, $a=6q+5$ is an odd integer …(3)
Therefore, from (1), (2), and (3) any positive odd integer is of the form $6q+1,6q+3$ or $6q+5$ ,where q is some integer.
Note: In this question the facts that the sum of an even number and an odd number is always an odd number and that the sum of two even numbers is always an even number is very important.
Also the value of r cannot exceed b as r is the remainder when a is divided by b and the remainder cannot exceed the divisor which is b in this case.
Complete step-by-step answer:
We will use Euclid’s Division Lemma here which states that if we have two positive integers a and b, then there exist unique integers q and r which satisfy the condition $a=bq+r$ where $0\le r
Now for our question, let a be any odd integer and let $b=6$ . Then according to the Euclid’s Division Lemma, we have the following:
$a=6q+r$ , where since r is the remainder, so $0\le r<6$ .
r can either be 1, 2, 3, 4 or 5.
Now, in the equation, $a=6q+r$ we have \[6q=\] even integer as 6 is an even integer.
If \[r=1\] , our equation becomes $a=6q+1$ .
This is an odd integer as $6q$ is an even number and 1 is an odd number. The sum of an even number and an odd number is always an odd number.
Hence, $a=6q+1$ is an odd integer …(1)
If $r=2$ , our equation becomes $a=6q+2$ $$
This is an even integer as $6q$ is an even number and 2 is an even number. The sum of two even numbers is always an even number.
Hence, $a=6q+2$ is an even integer
If $r=3$ , our equation becomes $a=6q+3$
This is an odd integer as $6q$ is an even number and 3 is an odd number. The sum of an even number and an odd number is always an odd number.
Hence, $a=6q+3$ is an odd integer …(2)
If $r=4$ , our equation becomes $a=6q+4$ $$
This is an even integer as $6q$ is an even number and 4 is an even number. The sum of two even numbers is always an even number.
Hence, $a=6q+4$ is an even integer
If $r=5$, our equation becomes $a=6q+5$
This is an odd integer as $6q$ is an even number and 5 is an odd number. The sum of an even number and an odd number is always an odd number.
Hence, $a=6q+5$ is an odd integer …(3)
Therefore, from (1), (2), and (3) any positive odd integer is of the form $6q+1,6q+3$ or $6q+5$ ,where q is some integer.
Note: In this question the facts that the sum of an even number and an odd number is always an odd number and that the sum of two even numbers is always an even number is very important.
Also the value of r cannot exceed b as r is the remainder when a is divided by b and the remainder cannot exceed the divisor which is b in this case.
Recently Updated Pages
Master Class 7 Social Science: Engaging Questions & Answers for Success

Master Class 7 Science: Engaging Questions & Answers for Success

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Trending doubts
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

Differentiate between weather and climate How do they class 7 social science CBSE

What are the controls affecting the climate of Ind class 7 social science CBSE

List of coprime numbers from 1 to 100 class 7 maths CBSE

Write a letter to the editor of the national daily class 7 english CBSE


