
Show that \[A = \left( {\begin{array}{*{20}{c}}
2&{ - 3} \\
3&4
\end{array}} \right)\] satisfies the equation \[{x^2} - 6x + 17 = 0\]. Hence, find \[{A^{ - 1}}\].
Answer
463.8k+ views
Hint: To solve this question first we put the value of the matrix and check whether this equation satisfies this equation or not. To check this first we find the square of the matrix and all other required values by multiplying by a constant. And then we multiply that by the inverse of the matrix and again put the value of the matrix and find the inverse of that.
Complete step by step answer:
We have given a matrix. \[A = \left( {\begin{array}{*{20}{c}}
2&{ - 3} \\
3&4
\end{array}} \right)\]
To check whether the matrix satisfies the equation or not we have to put the value of \[x\] in terms of matrix \[A\]. So the given equation is \[{x^2} - 6x + 17 = 0\] of putting the value of \[A\].
\[{A^2} - 6A + 17 = 0\]
Now solving the value of \[{A^2}\].
\[{A^2} = A.A\]
\[\Rightarrow {A^2} = \left( {\begin{array}{*{20}{c}}
2&{ - 3} \\
3&4
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
2&{ - 3} \\
3&4
\end{array}} \right)\]
On multiplying both the matrices.
\[{A^2} = \left( {\begin{array}{*{20}{c}}
{4 - 9}&{ - 6 - 12} \\
{6 + 12}&{ - 9 + 16}
\end{array}} \right)\]
On further calculating
\[{A^2} = \left( {\begin{array}{*{20}{c}}
{ - 5}&{ - 18} \\
{18}&7
\end{array}} \right)\]
Now on calculating the value of \[6A\].
\[6A = 6\left( {\begin{array}{*{20}{c}}
2&{ - 3} \\
3&4
\end{array}} \right)\]
On multiplying this constant.
\[6A = \left( {\begin{array}{*{20}{c}}
{12}&{ - 18} \\
{18}&7
\end{array}} \right)\]
On solving the value of \[17I\].
\[17I = 17\left( {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right)\]
On multiplying this constant.
\[17I = \left( {\begin{array}{*{20}{c}}
{17}&0 \\
0&{17}
\end{array}} \right)\]
On putting all these values in the given \[{A^2} - 6A + 17 = 0\] equation.
\[{A^2} - 6A + 17 = \left( {\begin{array}{*{20}{c}}
{ - 5}&{ - 18} \\
{18}&7
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{12}&{ - 18} \\
{18}&7
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{17}&0 \\
0&{17}
\end{array}} \right)\]
On further solving this equation.
\[{A^2} - 6A + 17 = \left( {\begin{array}{*{20}{c}}
{ - 5 - 12 + 17}&{ - 18 + 18 + 0} \\
{18 - 18 + 0}&{7 - 24 + 17}
\end{array}} \right)\]
\[\Rightarrow {A^2} - 6A + 17 = \left( {\begin{array}{*{20}{c}}
0&0 \\
0&0
\end{array}} \right)\]
Hence, matrix \[A\] satisfies the equation, \[{x^2} - 6x + 17 = 0\].
\[{A^2} - 6A + 17 = 0\]
On rearranging this equation.
\[{A^2} - 6A = - 17\]
Multiplying this equation by \[{A^{ - 1}}\] both sides.
\[A - 6{I_2} = - 17{A^{ - 1}}\]
On rearranging this equation.
\[{A^{ - 1}} = \dfrac{1}{{17}}\left( {6{I_2} - A} \right)\]
On putting the value of A and I.
\[{A^{ - 1}} = \dfrac{1}{{17}}\left( {\left( {\begin{array}{*{20}{c}}
6&0 \\
0&6
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
2&{ - 3} \\
3&4
\end{array}} \right)} \right)\]
\[\therefore {A^{ - 1}} = \dfrac{1}{{17}}\left( {\begin{array}{*{20}{c}}
4&3 \\
{ - 3}&2
\end{array}} \right)\]
Hence, the given matrix satisfies the given quadratic equation and the value of \[{A^{ - 1}}\] is \[{A^{ - 1}} = \dfrac{1}{{17}}\left( {\begin{array}{*{20}{c}}
4&3 \\
{ - 3}&2
\end{array}} \right)\].
Note:
Complete step by step answer:
We have given a matrix. \[A = \left( {\begin{array}{*{20}{c}}
2&{ - 3} \\
3&4
\end{array}} \right)\]
To check whether the matrix satisfies the equation or not we have to put the value of \[x\] in terms of matrix \[A\]. So the given equation is \[{x^2} - 6x + 17 = 0\] of putting the value of \[A\].
\[{A^2} - 6A + 17 = 0\]
Now solving the value of \[{A^2}\].
\[{A^2} = A.A\]
\[\Rightarrow {A^2} = \left( {\begin{array}{*{20}{c}}
2&{ - 3} \\
3&4
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
2&{ - 3} \\
3&4
\end{array}} \right)\]
On multiplying both the matrices.
\[{A^2} = \left( {\begin{array}{*{20}{c}}
{4 - 9}&{ - 6 - 12} \\
{6 + 12}&{ - 9 + 16}
\end{array}} \right)\]
On further calculating
\[{A^2} = \left( {\begin{array}{*{20}{c}}
{ - 5}&{ - 18} \\
{18}&7
\end{array}} \right)\]
Now on calculating the value of \[6A\].
\[6A = 6\left( {\begin{array}{*{20}{c}}
2&{ - 3} \\
3&4
\end{array}} \right)\]
On multiplying this constant.
\[6A = \left( {\begin{array}{*{20}{c}}
{12}&{ - 18} \\
{18}&7
\end{array}} \right)\]
On solving the value of \[17I\].
\[17I = 17\left( {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right)\]
On multiplying this constant.
\[17I = \left( {\begin{array}{*{20}{c}}
{17}&0 \\
0&{17}
\end{array}} \right)\]
On putting all these values in the given \[{A^2} - 6A + 17 = 0\] equation.
\[{A^2} - 6A + 17 = \left( {\begin{array}{*{20}{c}}
{ - 5}&{ - 18} \\
{18}&7
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{12}&{ - 18} \\
{18}&7
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{17}&0 \\
0&{17}
\end{array}} \right)\]
On further solving this equation.
\[{A^2} - 6A + 17 = \left( {\begin{array}{*{20}{c}}
{ - 5 - 12 + 17}&{ - 18 + 18 + 0} \\
{18 - 18 + 0}&{7 - 24 + 17}
\end{array}} \right)\]
\[\Rightarrow {A^2} - 6A + 17 = \left( {\begin{array}{*{20}{c}}
0&0 \\
0&0
\end{array}} \right)\]
Hence, matrix \[A\] satisfies the equation, \[{x^2} - 6x + 17 = 0\].
\[{A^2} - 6A + 17 = 0\]
On rearranging this equation.
\[{A^2} - 6A = - 17\]
Multiplying this equation by \[{A^{ - 1}}\] both sides.
\[A - 6{I_2} = - 17{A^{ - 1}}\]
On rearranging this equation.
\[{A^{ - 1}} = \dfrac{1}{{17}}\left( {6{I_2} - A} \right)\]
On putting the value of A and I.
\[{A^{ - 1}} = \dfrac{1}{{17}}\left( {\left( {\begin{array}{*{20}{c}}
6&0 \\
0&6
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
2&{ - 3} \\
3&4
\end{array}} \right)} \right)\]
\[\therefore {A^{ - 1}} = \dfrac{1}{{17}}\left( {\begin{array}{*{20}{c}}
4&3 \\
{ - 3}&2
\end{array}} \right)\]
Hence, the given matrix satisfies the given quadratic equation and the value of \[{A^{ - 1}}\] is \[{A^{ - 1}} = \dfrac{1}{{17}}\left( {\begin{array}{*{20}{c}}
4&3 \\
{ - 3}&2
\end{array}} \right)\].
Note:
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

