
Seven white balls and three black balls are randomly placed in a row. The probability that no two black balls are placed adjacently equals
A.\[\left( 1 \right)\]$\dfrac{1}{2}$
B.\[\left( 2 \right)\]$\dfrac{7}{{15}}$
C.\[\left( 3 \right)\]$\dfrac{2}{{15}}$
D.\[\left( 4 \right)\]$\dfrac{1}{3}$
Answer
496.5k+ views
Hint: We have to find the required probability . We solve this question using the concept of probability and also the concept of arrangements of the balls using permutation and combination . We firstly find the total possible arrangements and also the favourable outcomes using the formula of combination . The probability is given by favourable outcomes to the total possible arrangements.
Complete step-by-step answer:
Given :
Total balls \[ = {\text{ }}7{\text{ }} + {\text{ }}3\]
\[ = {\text{ }}10\]
Total ways of arrangements of the balls in a row \[ = {\text{ }}{}^{10}{C_3}\]
Using the formula of combination
\[{}^n{C_r} = {\text{ }}\dfrac{{n!}}{{r!{\text{ }} \times {\text{ }}\left( {n{\text{ }} - {\text{ }}r} \right)!}}\]
Applying the formula , we get
The total ways of arrangements of the ball in a row \[ = {\text{ }}\dfrac{{10{\text{ }}!}}{{\left( {{\text{ }}3!{\text{ }} \times {\text{ }}7!{\text{ }}} \right)}}\]
\[ = {\text{ }}120\]
As given in the question no two black balls are placed adjacently , then the arrangement is as shown
\[\_{\text{ }}W{\text{ }}\_{\text{ }}W{\text{ }}\_{\text{ }}W{\text{ }}\_{\text{ }}W{\text{ }}\_{\text{ }}W{\text{ }}\_{\text{ }}W{\text{ }}\_{\text{ }}W{\text{ }}\_\]
There are $6$ blank spaces between the seven white balls .
So , As given no two black balls should be adjacently placed
The total positions where the white balls can be placed are $8$.
So , the favourable outcomes are \[ = {\text{ }}{}^8{C_3}\]
Again applying the formula of combination , we get
Total favourable outcomes \[ = {\text{ }}\dfrac{{8{\text{ }}!}}{{\left( {{\text{ }}3{\text{ }}!{\text{ }} \times {\text{ }}5{\text{ }}!{\text{ }}} \right)}}\]
\[ = {\text{ }}56\]
\[The{\text{ }}required{\text{ }}probability{\text{ }} = \dfrac{{total{\text{ }}favourable{\text{ }}outcomes}}{{total{\text{ }}possible{\text{ }}outcomes}}\]
Required probability \[ = {\text{ }}\dfrac{{56}}{{120}}\]
Cancelling the terms , we get
Required probability \[ = {\text{ }}\dfrac{7}{{15}}\]
Hence , the required probability is $\dfrac{7}{{15}}$
So, the correct answer is “Option B”.
Note: Corresponding to each combination of ${}^n{C_r}$ we have $r!$ permutations, because $r$ objects in every combination can be rearranged in $r!$ ways . Hence , the total number of permutations of $n$different things taken $r$ at a time is\[{}^n{C_r} \times {\text{ }}r!\]. Thus\[\;{}^n{P_r}{\text{ }} = {\text{ }}{}^n{C_r}{\text{ }} \times {\text{ }}r!{\text{ }},{\text{ }}0 < {\text{ }}r{\text{ }} \leqslant n\]
Also , some formulas used :
\[{}^n{C_1} = {\text{ }}n\]
\[{}^n{C_2}{\text{ }} = {\text{ }}\dfrac{{n\left( {n - 1} \right)}}{2}\]
\[{}^n{C_0}{\text{ }} = {\text{ }}1\]
\[{}^n{C_n} = {\text{ }}1\]
Complete step-by-step answer:
Given :
Total balls \[ = {\text{ }}7{\text{ }} + {\text{ }}3\]
\[ = {\text{ }}10\]
Total ways of arrangements of the balls in a row \[ = {\text{ }}{}^{10}{C_3}\]
Using the formula of combination
\[{}^n{C_r} = {\text{ }}\dfrac{{n!}}{{r!{\text{ }} \times {\text{ }}\left( {n{\text{ }} - {\text{ }}r} \right)!}}\]
Applying the formula , we get
The total ways of arrangements of the ball in a row \[ = {\text{ }}\dfrac{{10{\text{ }}!}}{{\left( {{\text{ }}3!{\text{ }} \times {\text{ }}7!{\text{ }}} \right)}}\]
\[ = {\text{ }}120\]
As given in the question no two black balls are placed adjacently , then the arrangement is as shown
\[\_{\text{ }}W{\text{ }}\_{\text{ }}W{\text{ }}\_{\text{ }}W{\text{ }}\_{\text{ }}W{\text{ }}\_{\text{ }}W{\text{ }}\_{\text{ }}W{\text{ }}\_{\text{ }}W{\text{ }}\_\]
There are $6$ blank spaces between the seven white balls .
So , As given no two black balls should be adjacently placed
The total positions where the white balls can be placed are $8$.
So , the favourable outcomes are \[ = {\text{ }}{}^8{C_3}\]
Again applying the formula of combination , we get
Total favourable outcomes \[ = {\text{ }}\dfrac{{8{\text{ }}!}}{{\left( {{\text{ }}3{\text{ }}!{\text{ }} \times {\text{ }}5{\text{ }}!{\text{ }}} \right)}}\]
\[ = {\text{ }}56\]
\[The{\text{ }}required{\text{ }}probability{\text{ }} = \dfrac{{total{\text{ }}favourable{\text{ }}outcomes}}{{total{\text{ }}possible{\text{ }}outcomes}}\]
Required probability \[ = {\text{ }}\dfrac{{56}}{{120}}\]
Cancelling the terms , we get
Required probability \[ = {\text{ }}\dfrac{7}{{15}}\]
Hence , the required probability is $\dfrac{7}{{15}}$
So, the correct answer is “Option B”.
Note: Corresponding to each combination of ${}^n{C_r}$ we have $r!$ permutations, because $r$ objects in every combination can be rearranged in $r!$ ways . Hence , the total number of permutations of $n$different things taken $r$ at a time is\[{}^n{C_r} \times {\text{ }}r!\]. Thus\[\;{}^n{P_r}{\text{ }} = {\text{ }}{}^n{C_r}{\text{ }} \times {\text{ }}r!{\text{ }},{\text{ }}0 < {\text{ }}r{\text{ }} \leqslant n\]
Also , some formulas used :
\[{}^n{C_1} = {\text{ }}n\]
\[{}^n{C_2}{\text{ }} = {\text{ }}\dfrac{{n\left( {n - 1} \right)}}{2}\]
\[{}^n{C_0}{\text{ }} = {\text{ }}1\]
\[{}^n{C_n} = {\text{ }}1\]
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Sketch the electric field lines in case of an electric class 12 physics CBSE

Explain the formation of energy bands in solids On class 12 physics CBSE

Mention any two factors on which the capacitance of class 12 physics CBSE

Drive an expression for the electric field due to an class 12 physics CBSE

Draw a ray diagram of compound microscope when the class 12 physics CBSE

