
\[{\sec ^{ - 1}}x + {\tan ^{ - 1}}x\] is real if \[x \in ( - \infty , - a] \cup [b,\infty ).\] Find the value of \[a + b\].
A. \[ - 1\]
B. 0
C. 1
D. 2
Answer
559.8k+ views
Hint: In this question, we will proceed by converting the inverse function of secant into inverse function of tangent by using the formula \[{\sec ^{ - 1}}x = {\tan ^{ - 1}}\sqrt {{x^2} - 1} \]. Further compare the values for \[x\] to be real to get the required value of the solution.
Complete step-by-step answer:
Given that \[{\sec ^{ - 1}}x + {\tan ^{ - 1}}x\] is real if \[x \in ( - \infty , - a] \cup [b,\infty ).\]
We know that \[{\sec ^{ - 1}}x = {\tan ^{ - 1}}\sqrt {{x^2} - 1} \]
Substituting \[{\sec ^{ - 1}}x = {\tan ^{ - 1}}\sqrt {{x^2} - 1} \] in \[{\sec ^{ - 1}}x + {\tan ^{ - 1}}x\], we get
\[ \Rightarrow {\sec ^{ - 1}}x + {\tan ^{ - 1}}x = {\tan ^{ - 1}}x + {\tan ^{ - 1}}\sqrt {{x^2} - 1} \]
Since the value of \[{\sec ^{ - 1}}x + {\tan ^{ - 1}}x\] is real, the value of \[{\tan ^{ - 1}}x + {\tan ^{ - 1}}\sqrt {{x^2} - 1} \] is also real.
We get real values of \[{\tan ^{ - 1}}x + {\tan ^{ - 1}}\sqrt {{x^2} - 1} \] if and only if \[\sqrt {{x^2} - 1} \geqslant 0\].
So, consider the values of \[\sqrt {{x^2} - 1} \geqslant 0\]
\[ \Rightarrow \sqrt {{x^2} - 1} \geqslant 0\]
Squaring on both sides, we get
\[
\Rightarrow {\left( {\sqrt {{x^2} - 1} } \right)^2} \geqslant {0^2} \\
\Rightarrow {x^2} - 1 \geqslant 0 \\
\Rightarrow {x^2} \geqslant 1 \\
\]
Rooting on both sides, we get
\[
\Rightarrow \sqrt {{x^2}} \geqslant \sqrt 1 \\
\Rightarrow \left| x \right| \geqslant 1 \\
\]
We know if \[\left| x \right| \geqslant a\] then \[x \in ( - \infty , - a] \cup [a,\infty )\].
So, we have \[\left| x \right| \geqslant 1\] as \[x \in ( - \infty , - 1] \cup [1,\infty )\].
By comparing \[x \in ( - \infty , - 1] \cup [1,\infty )\] and \[x \in ( - \infty , - a] \cup [b,\infty )\], we have \[a = 1\] and \[b = 1\].
Now, consider the value of \[a + b\] i.e., \[a + b = 1 + 1 = 2\].
Therefore, the value of \[a + b\] is 2.
Thus, the correct option is D. 2
Note:
To solve these kinds of problems, remember the formulae of inverse trigonometry and the conversions of inequalities. Some of the important inequality conversions are
1. If \[\left| x \right| \geqslant 1\] then \[x \in ( - \infty , - 1] \cup [1,\infty )\]
2. If \[a \leqslant x \leqslant b\] then \[x \in \left[ {a,b} \right]\]
3. If \[a < x \leqslant b\] then \[x \in (a,b]\]
4. If \[a \leqslant x < b\] then \[x \in [a,b)\]
5. If \[a < x < b\] then \[x \in \left( {a,b} \right)\]
Complete step-by-step answer:
Given that \[{\sec ^{ - 1}}x + {\tan ^{ - 1}}x\] is real if \[x \in ( - \infty , - a] \cup [b,\infty ).\]
We know that \[{\sec ^{ - 1}}x = {\tan ^{ - 1}}\sqrt {{x^2} - 1} \]
Substituting \[{\sec ^{ - 1}}x = {\tan ^{ - 1}}\sqrt {{x^2} - 1} \] in \[{\sec ^{ - 1}}x + {\tan ^{ - 1}}x\], we get
\[ \Rightarrow {\sec ^{ - 1}}x + {\tan ^{ - 1}}x = {\tan ^{ - 1}}x + {\tan ^{ - 1}}\sqrt {{x^2} - 1} \]
Since the value of \[{\sec ^{ - 1}}x + {\tan ^{ - 1}}x\] is real, the value of \[{\tan ^{ - 1}}x + {\tan ^{ - 1}}\sqrt {{x^2} - 1} \] is also real.
We get real values of \[{\tan ^{ - 1}}x + {\tan ^{ - 1}}\sqrt {{x^2} - 1} \] if and only if \[\sqrt {{x^2} - 1} \geqslant 0\].
So, consider the values of \[\sqrt {{x^2} - 1} \geqslant 0\]
\[ \Rightarrow \sqrt {{x^2} - 1} \geqslant 0\]
Squaring on both sides, we get
\[
\Rightarrow {\left( {\sqrt {{x^2} - 1} } \right)^2} \geqslant {0^2} \\
\Rightarrow {x^2} - 1 \geqslant 0 \\
\Rightarrow {x^2} \geqslant 1 \\
\]
Rooting on both sides, we get
\[
\Rightarrow \sqrt {{x^2}} \geqslant \sqrt 1 \\
\Rightarrow \left| x \right| \geqslant 1 \\
\]
We know if \[\left| x \right| \geqslant a\] then \[x \in ( - \infty , - a] \cup [a,\infty )\].
So, we have \[\left| x \right| \geqslant 1\] as \[x \in ( - \infty , - 1] \cup [1,\infty )\].
By comparing \[x \in ( - \infty , - 1] \cup [1,\infty )\] and \[x \in ( - \infty , - a] \cup [b,\infty )\], we have \[a = 1\] and \[b = 1\].
Now, consider the value of \[a + b\] i.e., \[a + b = 1 + 1 = 2\].
Therefore, the value of \[a + b\] is 2.
Thus, the correct option is D. 2
Note:
To solve these kinds of problems, remember the formulae of inverse trigonometry and the conversions of inequalities. Some of the important inequality conversions are
1. If \[\left| x \right| \geqslant 1\] then \[x \in ( - \infty , - 1] \cup [1,\infty )\]
2. If \[a \leqslant x \leqslant b\] then \[x \in \left[ {a,b} \right]\]
3. If \[a < x \leqslant b\] then \[x \in (a,b]\]
4. If \[a \leqslant x < b\] then \[x \in [a,b)\]
5. If \[a < x < b\] then \[x \in \left( {a,b} \right)\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

