
Salts of metals X, Y and Z are electrolyzed under identical conditions using the same quantity of electricity. It was observed that $4.2\,{\text{g}}$ of X, $5.4\,{\text{g}}$ of Y and $19.2\,{\text{g}}$ of Z were deposited at the respective cathode, if the atomic weights of X, Y and Z are$7$, $27$and $64$respectively, then their ratio valencies is,
A. $1:2:3\,$
B.$1:3:2$
C.$2:3:1$
D.$3:2:2$
Answer
554.4k+ views
Hint: We can determine the valency by using Faraday’s second law of electrolysis. According to which the amount deposited or liberated on the electrode is directly proportional to its equivalent weight so, we will substitute molar mass and valency in place of equivalent
Formula used: $\dfrac{{{{\text{w}}_{\text{1}}}}}{{{{\text{w}}_{\text{2}}}}}{\text{ = }}\dfrac{{{{\text{E}}_{\text{1}}}}}{{{{\text{E}}_{\text{2}}}}}$
Complete step-by-step answer:
According to Faraday’s second law of electrolysis when a certain amount of charge is passed through a cell, the amount deposited or liberated on the electrode is directly proportional to its equivalent weight.
The mathematical expression of Faraday’s second law of electrolysis is shown as follows:
$\dfrac{{{{\text{w}}_{\text{1}}}}}{{{{\text{w}}_{\text{2}}}}}{\text{ = }}\dfrac{{{{\text{E}}_{\text{1}}}}}{{{{\text{E}}_{\text{2}}}}}$
Where,
${{\text{w}}_{\text{1}}}$and ${{\text{w}}_{\text{2}}}$ are the weight deposited of different elements on the electrodes.
${{\text{E}}_{\text{1}}}$and ${{\text{E}}_{\text{2}}}$ are the equivalent weight of elements deposited on the electrodes.
The above relation can be rearranged as follows:
$\dfrac{{{{\text{w}}_{\text{1}}}}}{{{{\text{E}}_{\text{1}}}}}{\text{ = }}\dfrac{{{{\text{w}}_2}}}{{{{\text{E}}_{\text{2}}}}}$
The above relation can be written for salts of metals X, Y and Z that are electrolyzed as follows:
$\dfrac{{{{\text{w}}_{\text{X}}}}}{{{{\text{E}}_{\text{X}}}}}{\text{ = }}\dfrac{{{{\text{w}}_{\text{Y}}}}}{{{{\text{E}}_{\text{Y}}}}} = \dfrac{{{{\text{w}}_{\text{Z}}}}}{{{{\text{E}}_{\text{Z}}}}}$.....$(1)$
The formula of equivalent weight is as follows:
${\text{equivalent}}\,{\text{weight = }}\dfrac{{{\text{Atomic}}\,{\text{weight}}\,{\text{(M)}}}}{{{\text{valency}}\,{\text{(n)}}}}$
So, the ratio of metals X, Y and Z is as follows:
$\dfrac{{{{\text{w}}_{\text{X}}}}}{{{{\text{M}}_{\text{X}}}/{{\text{n}}_{\text{X}}}}}{\text{:}}\dfrac{{{{\text{w}}_{\text{Y}}}}}{{{{\text{M}}_{\text{Y}}}/{{\text{n}}_{\text{Y}}}}}:\dfrac{{{{\text{w}}_{\text{Z}}}}}{{{{\text{M}}_{\text{Z}}}/{{\text{n}}_{\text{Z}}}}}$
On substituting $4.2\,{\text{g}}$for equivalent weight of X, $5.4\,{\text{g}}$for Y and $19.2\,{\text{g}}$for Z and, are$7$ for atomic mass of X,, $27$ for Y and $64$ for Z.
$\dfrac{{{\text{4}}{\text{.2}}\,{\text{g}}}}{{{\text{7}}/{{\text{n}}_{\text{X}}}}}{\text{:}}\dfrac{{{\text{5}}{\text{.4}}\,{\text{g}}}}{{{\text{27}}/{{\text{n}}_{\text{Y}}}}}:\dfrac{{{\text{19}}{\text{.2}}\,{\text{g}}}}{{{\text{64}}/{{\text{n}}_{\text{Z}}}}}$
$0.6\,{{\text{n}}_{\text{x}}}{\text{:}}\,0.2\,{{\text{n}}_{\text{Y}}}:0.3\,{{\text{n}}_{\text{Z}}}$
We will take the simplest ratio as follows:
Divide each with $0.6$.
$\dfrac{{0.6\,{{\text{n}}_{\text{x}}}}}{{0.6}}{\text{:}}\,\dfrac{{0.2\,{{\text{n}}_{\text{Y}}}}}{{0.6}}:\dfrac{{0.3\,{{\text{n}}_{\text{Z}}}}}{{0.6}}$
${{\text{n}}_{\text{x}}}\,{\text{:}}\,\dfrac{{1\,{{\text{n}}_{\text{Y}}}}}{{3}}:\dfrac{{1\,{{\text{n}}_{\text{Z}}}}}{{2}}$
So,$1\,\,{{\text{n}}_{\text{x}}}{\text{:}}\,3\,{{\text{n}}_{\text{Y}}}:2\,{{\text{n}}_{\text{Z}}}$
So, the ratio of valencies is $1\,{\text{:}}\,3\,:2$.
Therefore, option (B) $1\,{\text{:}}\,3\,:2$, is correct.
Note: The equivalent weight is determined by dividing the atomic weight by valency. Valency is the charge or oxidation number of the atom. In the case of acids, the valency is determined as the number of protons donated. Ratio of equivalent weight of substance deposited gives the ratio of amount of substance deposited on an electrode.
Formula used: $\dfrac{{{{\text{w}}_{\text{1}}}}}{{{{\text{w}}_{\text{2}}}}}{\text{ = }}\dfrac{{{{\text{E}}_{\text{1}}}}}{{{{\text{E}}_{\text{2}}}}}$
Complete step-by-step answer:
According to Faraday’s second law of electrolysis when a certain amount of charge is passed through a cell, the amount deposited or liberated on the electrode is directly proportional to its equivalent weight.
The mathematical expression of Faraday’s second law of electrolysis is shown as follows:
$\dfrac{{{{\text{w}}_{\text{1}}}}}{{{{\text{w}}_{\text{2}}}}}{\text{ = }}\dfrac{{{{\text{E}}_{\text{1}}}}}{{{{\text{E}}_{\text{2}}}}}$
Where,
${{\text{w}}_{\text{1}}}$and ${{\text{w}}_{\text{2}}}$ are the weight deposited of different elements on the electrodes.
${{\text{E}}_{\text{1}}}$and ${{\text{E}}_{\text{2}}}$ are the equivalent weight of elements deposited on the electrodes.
The above relation can be rearranged as follows:
$\dfrac{{{{\text{w}}_{\text{1}}}}}{{{{\text{E}}_{\text{1}}}}}{\text{ = }}\dfrac{{{{\text{w}}_2}}}{{{{\text{E}}_{\text{2}}}}}$
The above relation can be written for salts of metals X, Y and Z that are electrolyzed as follows:
$\dfrac{{{{\text{w}}_{\text{X}}}}}{{{{\text{E}}_{\text{X}}}}}{\text{ = }}\dfrac{{{{\text{w}}_{\text{Y}}}}}{{{{\text{E}}_{\text{Y}}}}} = \dfrac{{{{\text{w}}_{\text{Z}}}}}{{{{\text{E}}_{\text{Z}}}}}$.....$(1)$
The formula of equivalent weight is as follows:
${\text{equivalent}}\,{\text{weight = }}\dfrac{{{\text{Atomic}}\,{\text{weight}}\,{\text{(M)}}}}{{{\text{valency}}\,{\text{(n)}}}}$
So, the ratio of metals X, Y and Z is as follows:
$\dfrac{{{{\text{w}}_{\text{X}}}}}{{{{\text{M}}_{\text{X}}}/{{\text{n}}_{\text{X}}}}}{\text{:}}\dfrac{{{{\text{w}}_{\text{Y}}}}}{{{{\text{M}}_{\text{Y}}}/{{\text{n}}_{\text{Y}}}}}:\dfrac{{{{\text{w}}_{\text{Z}}}}}{{{{\text{M}}_{\text{Z}}}/{{\text{n}}_{\text{Z}}}}}$
On substituting $4.2\,{\text{g}}$for equivalent weight of X, $5.4\,{\text{g}}$for Y and $19.2\,{\text{g}}$for Z and, are$7$ for atomic mass of X,, $27$ for Y and $64$ for Z.
$\dfrac{{{\text{4}}{\text{.2}}\,{\text{g}}}}{{{\text{7}}/{{\text{n}}_{\text{X}}}}}{\text{:}}\dfrac{{{\text{5}}{\text{.4}}\,{\text{g}}}}{{{\text{27}}/{{\text{n}}_{\text{Y}}}}}:\dfrac{{{\text{19}}{\text{.2}}\,{\text{g}}}}{{{\text{64}}/{{\text{n}}_{\text{Z}}}}}$
$0.6\,{{\text{n}}_{\text{x}}}{\text{:}}\,0.2\,{{\text{n}}_{\text{Y}}}:0.3\,{{\text{n}}_{\text{Z}}}$
We will take the simplest ratio as follows:
Divide each with $0.6$.
$\dfrac{{0.6\,{{\text{n}}_{\text{x}}}}}{{0.6}}{\text{:}}\,\dfrac{{0.2\,{{\text{n}}_{\text{Y}}}}}{{0.6}}:\dfrac{{0.3\,{{\text{n}}_{\text{Z}}}}}{{0.6}}$
${{\text{n}}_{\text{x}}}\,{\text{:}}\,\dfrac{{1\,{{\text{n}}_{\text{Y}}}}}{{3}}:\dfrac{{1\,{{\text{n}}_{\text{Z}}}}}{{2}}$
So,$1\,\,{{\text{n}}_{\text{x}}}{\text{:}}\,3\,{{\text{n}}_{\text{Y}}}:2\,{{\text{n}}_{\text{Z}}}$
So, the ratio of valencies is $1\,{\text{:}}\,3\,:2$.
Therefore, option (B) $1\,{\text{:}}\,3\,:2$, is correct.
Note: The equivalent weight is determined by dividing the atomic weight by valency. Valency is the charge or oxidation number of the atom. In the case of acids, the valency is determined as the number of protons donated. Ratio of equivalent weight of substance deposited gives the ratio of amount of substance deposited on an electrode.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

10 examples of friction in our daily life

