
How is R.M.S. voltage of A.C. related to peak value of A.C. voltage?
Answer
511.8k+ views
Hint:The R.M.S. value of a function of a physical quantity is the square root of the arithmetic mean of the squares of the values of voltage while peak voltage is the maximum value of voltage. In order to find the relation between them use basic relation of general voltage and peak voltage as function to calculate the R.M.S. value of voltage.
Complete step-by-step answer:
According to question
We use analytical methods for calculation of R.M.S. value of voltage.
We know that the R.M.S. value of a function of a physical quantity is the square root of the arithmetic mean of the squares of the values of voltage.
Therefore according to the definition general equation for R.M.S. value of any continuous function V(t) defined over a time interval ≤ t ≤ is given by
Similarly, we can find R.M.S. value of voltage by using its general form as a function which is given as: -
Where
= peak voltage
V (t) = function of voltage
From above two equations we have
On simplifying we get
Using trigonometry transformation so that integration become easy we have,
On integrating, we get
,
But since the interval is a whole number of complete cycles (as per definition of R.M.S. value), the value of function will be zero on a complete cycle.
On putting the values we have
Finally we get
Therefore the above equation is the correct relation between peak voltage and R.M.S. voltage of A.C.
Note:For calculation of R.M.S. voltage we can also use a graphical method in which a sinusoidal function graph is drawn between the voltage and time because the voltage in ac circuit varies sinusoidal. The average value of current as well as voltage over one cycle is zero because the area under the respective graph vs time above and under the y-axis are equal.
Complete step-by-step answer:
According to question
We use analytical methods for calculation of R.M.S. value of voltage.
We know that the R.M.S. value of a function of a physical quantity is the square root of the arithmetic mean of the squares of the values of voltage.
Therefore according to the definition general equation for R.M.S. value of any continuous function V(t) defined over a time interval
Similarly, we can find R.M.S. value of voltage by using its general form as a function which is given as:
Where
V (t) = function of voltage
From above two equations we have
On simplifying we get
Using trigonometry transformation so that integration become easy we have,
On integrating, we get
But since the interval is a whole number of complete cycles (as per definition of R.M.S. value), the value of
On putting the values we have
Finally we get
Therefore the above equation is the correct relation between peak voltage and R.M.S. voltage of A.C.
Note:For calculation of R.M.S. voltage we can also use a graphical method in which a sinusoidal function graph is drawn between the voltage and time because the voltage in ac circuit varies sinusoidal. The average value of current as well as voltage over one cycle is zero because the area under the respective graph vs time above and under the y-axis are equal.
Latest Vedantu courses for you
Grade 11 Science PCM | CBSE | SCHOOL | English
CBSE (2025-26)
School Full course for CBSE students
₹41,848 per year
EMI starts from ₹3,487.34 per month
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Derive an expression for electric potential at point class 12 physics CBSE

Who discovered the cell and how class 12 biology CBSE
