
Resolve the given fraction into partial fractions
$\dfrac{{{\text{3}}{{\text{x}}^3} - 8{{\text{x}}^2} + 10}}{{{{\left( {{\text{x - 1}}} \right)}^4}}}$
Answer
603.3k+ views
Hint: To solve the given equation we apply the partial fraction decomposition method, i.e. we write out the partial fraction for each factor, then solve for coefficients by substituting zeroes in the equation.
Complete step-by-step answer:
Given Data,
$\dfrac{{{\text{3}}{{\text{x}}^3} - 8{{\text{x}}^2} + 10}}{{{{\left( {{\text{x - 1}}} \right)}^4}}}$ Can be resolved into partial fraction as $\dfrac{{\text{A}}}{{{\text{x - 1}}}} + \dfrac{{\text{B}}}{{{{\left( {{\text{x}} - 1} \right)}^2}}} + \dfrac{{\text{C}}}{{{{\left( {{\text{x - 1}}} \right)}^3}}} + \dfrac{{\text{D}}}{{{{\left( {{\text{x - 1}}} \right)}^4}}}$
So, ${\text{3}}{{\text{x}}^3} - 8{{\text{x}}^2} + 10$= ${\text{A}}{\left( {{\text{x - 1}}} \right)^3} + {\text{B}}{\left( {{\text{x - 1}}} \right)^2} + {\text{C}}\left( {{\text{x - 1}}} \right) + {\text{D}}$
Put x = 1 in the above equation we get 3 – 8 + 10 = D
⟹D = 5.
${\text{3}}{{\text{x}}^3} - 8{{\text{x}}^2} + 10$= ${\text{A}}\left( {{{\text{x}}^3} - 1 - 3{{\text{x}}^2}{\text{ + 3x}}} \right) + {\text{B}}\left( {{{\text{x}}^2}{\text{ + 1 - 2x}}} \right) + {\text{C}}\left( {{\text{x - 1}}} \right) + {\text{D}}$
$\left( {{{\left( {{\text{a - b}}} \right)}^3} = {{\text{a}}^3} - {{\text{b}}^3} - {\text{3}}{{\text{a}}^2}{\text{b + 3a}}{{\text{b}}^2}{\text{ and }}{{\left( {{\text{a - b}}} \right)}^2} = {{\text{a}}^2} + {{\text{b}}^2} - 2{\text{ab}}} \right)$
Now comparing the coefficients of ${{\text{a}}^3}$on both sides, we get, A = 3.
So the equation reduces to ${\text{3}}{{\text{x}}^3} - 8{{\text{x}}^2} + 10$= $3\left( {{{\text{x}}^3} - 1 - 3{{\text{x}}^2}{\text{ + 3x}}} \right) + {\text{B}}\left( {{{\text{x}}^2}{\text{ + 1 - 2x}}} \right) + {\text{C}}\left( {{\text{x - 1}}} \right) + {\text{D}}$
Now compare the constant on both sides we get, 10 = -3 + B – C + 5
⟹8 = B – C --- (1)
Comparing the coefficient of ${{\text{x}}^2}$, we get -8 = -9 + B
⟹B = 1
Put B = 1 in (1) we get C = -7.
∴ $\dfrac{{{\text{3}}{{\text{x}}^3} - 8{{\text{x}}^2} + 10}}{{{{\left( {{\text{x - 1}}} \right)}^4}}}$= $\dfrac{3}{{{\text{x - 1}}}} + \dfrac{1}{{{{\left( {{\text{x}} - 1} \right)}^2}}} - \dfrac{7}{{{{\left( {{\text{x - 1}}} \right)}^3}}} + \dfrac{5}{{{{\left( {{\text{x - 1}}} \right)}^4}}}$
Note: In order to solve this type of question it is essential to know the steps involved in the partial fraction decomposition method. In algebra, the partial fraction decomposition or partial fraction expansion of a rational function is an operation that consists of expressing the fraction as a sum of a polynomial and one or several fractions with a simpler denominator.
Complete step-by-step answer:
Given Data,
$\dfrac{{{\text{3}}{{\text{x}}^3} - 8{{\text{x}}^2} + 10}}{{{{\left( {{\text{x - 1}}} \right)}^4}}}$ Can be resolved into partial fraction as $\dfrac{{\text{A}}}{{{\text{x - 1}}}} + \dfrac{{\text{B}}}{{{{\left( {{\text{x}} - 1} \right)}^2}}} + \dfrac{{\text{C}}}{{{{\left( {{\text{x - 1}}} \right)}^3}}} + \dfrac{{\text{D}}}{{{{\left( {{\text{x - 1}}} \right)}^4}}}$
So, ${\text{3}}{{\text{x}}^3} - 8{{\text{x}}^2} + 10$= ${\text{A}}{\left( {{\text{x - 1}}} \right)^3} + {\text{B}}{\left( {{\text{x - 1}}} \right)^2} + {\text{C}}\left( {{\text{x - 1}}} \right) + {\text{D}}$
Put x = 1 in the above equation we get 3 – 8 + 10 = D
⟹D = 5.
${\text{3}}{{\text{x}}^3} - 8{{\text{x}}^2} + 10$= ${\text{A}}\left( {{{\text{x}}^3} - 1 - 3{{\text{x}}^2}{\text{ + 3x}}} \right) + {\text{B}}\left( {{{\text{x}}^2}{\text{ + 1 - 2x}}} \right) + {\text{C}}\left( {{\text{x - 1}}} \right) + {\text{D}}$
$\left( {{{\left( {{\text{a - b}}} \right)}^3} = {{\text{a}}^3} - {{\text{b}}^3} - {\text{3}}{{\text{a}}^2}{\text{b + 3a}}{{\text{b}}^2}{\text{ and }}{{\left( {{\text{a - b}}} \right)}^2} = {{\text{a}}^2} + {{\text{b}}^2} - 2{\text{ab}}} \right)$
Now comparing the coefficients of ${{\text{a}}^3}$on both sides, we get, A = 3.
So the equation reduces to ${\text{3}}{{\text{x}}^3} - 8{{\text{x}}^2} + 10$= $3\left( {{{\text{x}}^3} - 1 - 3{{\text{x}}^2}{\text{ + 3x}}} \right) + {\text{B}}\left( {{{\text{x}}^2}{\text{ + 1 - 2x}}} \right) + {\text{C}}\left( {{\text{x - 1}}} \right) + {\text{D}}$
Now compare the constant on both sides we get, 10 = -3 + B – C + 5
⟹8 = B – C --- (1)
Comparing the coefficient of ${{\text{x}}^2}$, we get -8 = -9 + B
⟹B = 1
Put B = 1 in (1) we get C = -7.
∴ $\dfrac{{{\text{3}}{{\text{x}}^3} - 8{{\text{x}}^2} + 10}}{{{{\left( {{\text{x - 1}}} \right)}^4}}}$= $\dfrac{3}{{{\text{x - 1}}}} + \dfrac{1}{{{{\left( {{\text{x}} - 1} \right)}^2}}} - \dfrac{7}{{{{\left( {{\text{x - 1}}} \right)}^3}}} + \dfrac{5}{{{{\left( {{\text{x - 1}}} \right)}^4}}}$
Note: In order to solve this type of question it is essential to know the steps involved in the partial fraction decomposition method. In algebra, the partial fraction decomposition or partial fraction expansion of a rational function is an operation that consists of expressing the fraction as a sum of a polynomial and one or several fractions with a simpler denominator.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

