
Read the passage given below and answer the question:
Chemical reactions involve the interaction of atoms and molecules. A large number of atoms/ molecules (approximately \[\text{6}.0\text{23 }\times \text{ 1}{{0}^{\text{23}}}\]) are present in few grams of any chemical compound varying with their atomic/molecular masses. To handle such large numbers conveniently, the mole concept was introduced. This concept has implications in diverse areas such as analytical chemistry, biochemistry, electrochemistry and radiochemistry. The following example illustrates a typical case, involving chemical / electrochemical reaction, which requires a clear understanding of the mole concept.
A \[4.0\] molar aqueous solution of \[NaCl\] is prepared and \[500\text{ }mL\] of this solution is electrolyzed. This leads to the evolution of chlorine gas at one of the electrodes (atomic mass: \[Na=23,\text{ }Hg=200;\text{ }1\text{ }faraday=96500\text{ }coulombs\] ).
If the cathode is a H(g) electrode, the maximum weight (g) of amalgam formed from this solution is:
A ) \[200\]
B ) \[225\]
C ) \[400\]
D ) \[446\]
Answer
586.8k+ views
Hint: One mole of a substance contains Avogadro’s number \[6.023 \times {10^{23}}\] of molecules. To calculate the number of moles, multiply the molarity with volume (in L).
Complete answer:
Cathode is mercury electrode. At cathode, sodium cation will gain an electron and form sodium metal. Sodium will form amalgam with mercury. Write a balanced half reaction for the formation of sodium amalgam.
\[\text{N}{{\text{a}}^{+}}\text{ + 1}{{\text{e}}^{-}}\text{ + Hg }\to \text{ Na}-\text{Hg }\]
\[500\text{ }ml\text{ }\left( or\text{ }0.500\text{ }L \right)\text{ }of\text{ }4.0\] molar aqueous solution of sodium chloride is prepared.
To calculate the number of moles, multiply the molarity with volume (in L).
\[500\text{ }ml\text{ }\left( or\text{ }0.500\text{ }L \right)\text{ }of\text{ }4.0\] molar aqueous solution of sodium chloride contains \[4.0\text{ mol/L }\times \text{ 0}\text{.500 L = 2}\text{.0}\] moles of sodium chloride. This contains \[2.0\] moles of sodium cations. They will form \[2.0\] moles of sodium amalgam.
The atomic mass of \[Na=23\] . The atomic mass of \[Hg=200\] .
Calculate the mass of sodium amalgam formed.
The mass of \[2.0\] moles of sodium amalgam is \[2\left( 23+200 \right)=446\text{ }g\].
Hence, option D ) \[446\] is the correct answer.
Note: The relationship, “\[1\text{ }faraday=96500\text{ }coulombs\] ” is not used in this reaction. This relationship can be used for the problems, in which the number of electrons participating in a half reaction are given and the number or moles needs to be calculated.
Complete answer:
Cathode is mercury electrode. At cathode, sodium cation will gain an electron and form sodium metal. Sodium will form amalgam with mercury. Write a balanced half reaction for the formation of sodium amalgam.
\[\text{N}{{\text{a}}^{+}}\text{ + 1}{{\text{e}}^{-}}\text{ + Hg }\to \text{ Na}-\text{Hg }\]
\[500\text{ }ml\text{ }\left( or\text{ }0.500\text{ }L \right)\text{ }of\text{ }4.0\] molar aqueous solution of sodium chloride is prepared.
To calculate the number of moles, multiply the molarity with volume (in L).
\[500\text{ }ml\text{ }\left( or\text{ }0.500\text{ }L \right)\text{ }of\text{ }4.0\] molar aqueous solution of sodium chloride contains \[4.0\text{ mol/L }\times \text{ 0}\text{.500 L = 2}\text{.0}\] moles of sodium chloride. This contains \[2.0\] moles of sodium cations. They will form \[2.0\] moles of sodium amalgam.
The atomic mass of \[Na=23\] . The atomic mass of \[Hg=200\] .
Calculate the mass of sodium amalgam formed.
The mass of \[2.0\] moles of sodium amalgam is \[2\left( 23+200 \right)=446\text{ }g\].
Hence, option D ) \[446\] is the correct answer.
Note: The relationship, “\[1\text{ }faraday=96500\text{ }coulombs\] ” is not used in this reaction. This relationship can be used for the problems, in which the number of electrons participating in a half reaction are given and the number or moles needs to be calculated.
Recently Updated Pages
Which cell organelles are present in white blood C class 11 biology CBSE

What is the molecular geometry of BrF4 A square planar class 11 chemistry CBSE

How can you explain that CCl4 has no dipole moment class 11 chemistry CBSE

Which will undergo SN2 reaction fastest among the following class 11 chemistry CBSE

The values of mass m for which the 100 kg block does class 11 physics CBSE

Why are voluntary muscles called striated muscles class 11 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

State the laws of reflection of light

Difference Between Prokaryotic Cells and Eukaryotic Cells

Show that total energy of a freely falling body remains class 11 physics CBSE

