
Rationalize the denominator and simplify $ \dfrac{3}{{\sqrt 5 - \sqrt 3 }} $ .
Answer
474k+ views
Hint: Rationalizing the denominator means getting rid of any square roots or cube roots by multiplying and dividing the given expression by the conjugate of the denominator. Conjugate is nothing but the same expression but with different sign between the terms like $ a + b $ is the conjugate of $ a - b $ . So here the denominator has two square roots terms subtracted from each other. So to rationalize the given expression, we have to multiply and divide the expression by the denominator’s conjugate. The conjugate of the denominator is $ \sqrt 5 + \sqrt 3 $ . Using this information, we have to simplify the given expression.
Complete step-by-step answer:
We are given to rationalize and simplify $ \dfrac{3}{{\sqrt 5 - \sqrt 3 }} $
So we have to first multiply and divide the expression by the conjugate of the denominator which is $ \sqrt 5 + \sqrt 3 $ .
The expression now becomes, $ \dfrac{3}{{\sqrt 5 - \sqrt 3 }} \times \dfrac{{\sqrt 5 + \sqrt 3 }}{{\sqrt 5 + \sqrt 3 }} = \dfrac{{3\left( {\sqrt 5 + \sqrt 3 } \right)}}{{\left( {\sqrt 5 - \sqrt 3 } \right)\left( {\sqrt 5 + \sqrt 3 } \right)}} $
Considering $ \sqrt 5 $ as ‘a’ and $ \sqrt 3 $ as ‘b’, $ \left( {\sqrt 5 - \sqrt 3 } \right)\left( {\sqrt 5 + \sqrt 3 } \right) $ becomes $ \left( {a - b} \right)\left( {a + b} \right) $
We already know that $ \left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2} $
Therefore, $ \left( {\sqrt 5 - \sqrt 3 } \right)\left( {\sqrt 5 + \sqrt 3 } \right) $ becomes $ {\left( {\sqrt 5 } \right)^2} - {\left( {\sqrt 3 } \right)^2} $
On substituting the above obtained value in $ \dfrac{{3\left( {\sqrt 5 + \sqrt 3 } \right)}}{{\left( {\sqrt 5 - \sqrt 3 } \right)\left( {\sqrt 5 + \sqrt 3 } \right)}} $ , we get
$ \Rightarrow \dfrac{{3\left( {\sqrt 5 + \sqrt 3 } \right)}}{{{{\left( {\sqrt 5 } \right)}^2} - {{\left( {\sqrt 3 } \right)}^2}}} $
The value of $ {\left( {\sqrt 5 } \right)^2} $ is 5 because the square root gets cancelled by the square and in the same way $ {\left( {\sqrt 3 } \right)^2} $ is 3
$ \Rightarrow \dfrac{{3\left( {\sqrt 5 + \sqrt 3 } \right)}}{{5 - 3}} $
Subtracting 3 from 5 results 2
$ \Rightarrow \dfrac{{3\left( {\sqrt 5 + \sqrt 3 } \right)}}{2} $
Now the denominator is rationalized, which means it has no square root or cube root terms.
Therefore, the expression $ \dfrac{3}{{\sqrt 5 - \sqrt 3 }} $ after rationalizing is $ \dfrac{{3\left( {\sqrt 5 + \sqrt 3 } \right)}}{2} $
So, the correct answer is “ $ \dfrac{{3\left( {\sqrt 5 + \sqrt 3 } \right)}}{2} $ ”.
Note: Instead of leaving the result like $ \dfrac{{3\left( {\sqrt 5 + \sqrt 3 } \right)}}{2} $ , we can expand the numerator by sending 3 inside the brackets like $ \dfrac{{3\sqrt 5 + 3\sqrt 3 }}{2} $ , and sending the 3 inside the roots like $ \dfrac{{\sqrt {5 \times {3^2}} + \sqrt {3 \times {3^2}} }}{2} = \dfrac{{\sqrt {45} + \sqrt {27} }}{2} $ . Whenever we send a variable or a number inside a square root, the number becomes its square such as 3 becomes 9, 5 becomes 25 etc.
Complete step-by-step answer:
We are given to rationalize and simplify $ \dfrac{3}{{\sqrt 5 - \sqrt 3 }} $
So we have to first multiply and divide the expression by the conjugate of the denominator which is $ \sqrt 5 + \sqrt 3 $ .
The expression now becomes, $ \dfrac{3}{{\sqrt 5 - \sqrt 3 }} \times \dfrac{{\sqrt 5 + \sqrt 3 }}{{\sqrt 5 + \sqrt 3 }} = \dfrac{{3\left( {\sqrt 5 + \sqrt 3 } \right)}}{{\left( {\sqrt 5 - \sqrt 3 } \right)\left( {\sqrt 5 + \sqrt 3 } \right)}} $
Considering $ \sqrt 5 $ as ‘a’ and $ \sqrt 3 $ as ‘b’, $ \left( {\sqrt 5 - \sqrt 3 } \right)\left( {\sqrt 5 + \sqrt 3 } \right) $ becomes $ \left( {a - b} \right)\left( {a + b} \right) $
We already know that $ \left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2} $
Therefore, $ \left( {\sqrt 5 - \sqrt 3 } \right)\left( {\sqrt 5 + \sqrt 3 } \right) $ becomes $ {\left( {\sqrt 5 } \right)^2} - {\left( {\sqrt 3 } \right)^2} $
On substituting the above obtained value in $ \dfrac{{3\left( {\sqrt 5 + \sqrt 3 } \right)}}{{\left( {\sqrt 5 - \sqrt 3 } \right)\left( {\sqrt 5 + \sqrt 3 } \right)}} $ , we get
$ \Rightarrow \dfrac{{3\left( {\sqrt 5 + \sqrt 3 } \right)}}{{{{\left( {\sqrt 5 } \right)}^2} - {{\left( {\sqrt 3 } \right)}^2}}} $
The value of $ {\left( {\sqrt 5 } \right)^2} $ is 5 because the square root gets cancelled by the square and in the same way $ {\left( {\sqrt 3 } \right)^2} $ is 3
$ \Rightarrow \dfrac{{3\left( {\sqrt 5 + \sqrt 3 } \right)}}{{5 - 3}} $
Subtracting 3 from 5 results 2
$ \Rightarrow \dfrac{{3\left( {\sqrt 5 + \sqrt 3 } \right)}}{2} $
Now the denominator is rationalized, which means it has no square root or cube root terms.
Therefore, the expression $ \dfrac{3}{{\sqrt 5 - \sqrt 3 }} $ after rationalizing is $ \dfrac{{3\left( {\sqrt 5 + \sqrt 3 } \right)}}{2} $
So, the correct answer is “ $ \dfrac{{3\left( {\sqrt 5 + \sqrt 3 } \right)}}{2} $ ”.
Note: Instead of leaving the result like $ \dfrac{{3\left( {\sqrt 5 + \sqrt 3 } \right)}}{2} $ , we can expand the numerator by sending 3 inside the brackets like $ \dfrac{{3\sqrt 5 + 3\sqrt 3 }}{2} $ , and sending the 3 inside the roots like $ \dfrac{{\sqrt {5 \times {3^2}} + \sqrt {3 \times {3^2}} }}{2} = \dfrac{{\sqrt {45} + \sqrt {27} }}{2} $ . Whenever we send a variable or a number inside a square root, the number becomes its square such as 3 becomes 9, 5 becomes 25 etc.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
The singular of lice is louse A Yes B No class 8 english CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

How many ounces are in 500 mL class 8 maths CBSE

Advantages and disadvantages of science

1 meter is equal to how many feet class 8 maths CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
