
If the value of x, $x = 2 + {2^{\dfrac{2}{3}}} + {2^{\dfrac{1}{3}}}$, then the value of ${x^3} - 6{x^2} + 6x$ is
(a) 3
(b) 2
(c) 1
(d) None of these
Answer
592.8k+ views
Hint – In this question the value of x is given and we need to find the value of the given expression, take 2 on the left hand side towards x and take cube both the sides. Use the algebraic identity of ${\left( {a - b} \right)^3}$and others to reach the answer.
Complete step-by-step answer:
Given equation is
$x = 2 + {2^{\dfrac{2}{3}}} + {2^{\dfrac{1}{3}}}$
So, we have to find out the value of ${x^3} - 6{x^2} + 6x$.
Now in given equation take 2 to L.H.S and take cube on both sides we have,
$ \Rightarrow x - 2 = {2^{\dfrac{2}{3}}} + {2^{\dfrac{1}{3}}}$ ………………….. (1)
\[ \Rightarrow {\left( {x - 2} \right)^3} = {\left( {{2^{\dfrac{2}{3}}} + {2^{\dfrac{1}{3}}}} \right)^3}\]
Now as we know ${\left( {a - b} \right)^3} = {a^3} - {b^3} - 3{a^2}b + 3a{b^2}$ and ${\left( {a + b} \right)^3} = {a^3} + {b^3} + 3{a^2}b + 3a{b^2}$ so, apply this property in above equation we have,
\[ \Rightarrow {x^3} - {2^3} - 3\left( {{x^2}} \right)\left( 2 \right) + 3x\left( {{2^2}} \right) = {\left( {{2^{\dfrac{2}{3}}}} \right)^3} + {\left( {{2^{\dfrac{1}{3}}}} \right)^3} + 3{\left( {{2^{\dfrac{2}{3}}}} \right)^2}\left( {{2^{\dfrac{1}{3}}}} \right) + 3\left( {{2^{\dfrac{2}{3}}}} \right){\left( {{2^{\dfrac{1}{3}}}} \right)^2}\]
Now simplify the above equation we have,
\[ \Rightarrow {x^3} - 8 - 6{x^2} + 12x = {2^2} + 2 + 3\left( {{2^{\dfrac{2}{3}}}} \right)\left( {{2^{\dfrac{1}{3}}}} \right)\left( {{2^{\dfrac{2}{3}}} + {2^{\dfrac{1}{3}}}} \right)\]
Now from equation (1) we have,
\[ \Rightarrow {x^3} - 8 - 6{x^2} + 12x = {2^2} + 2 + 3\left( {{2^{\dfrac{2}{3} + \dfrac{1}{3}}}} \right)\left( {x - 2} \right)\]
Now simplify the above equation we have,
\[ \Rightarrow {x^3} - 8 - 6{x^2} + 12x = 6 + \left( {3 \times 2\left( {x - 2} \right)} \right)\]
\[ \Rightarrow {x^3} - 8 - 6{x^2} + 12x = 6 + 6x - 12 = 6x - 6\]
\[ \Rightarrow {x^3} - 8 - 6{x^2} + 6x = - 6\]
\[ \Rightarrow {x^3} - 6{x^2} + 6x = 8 - 6 = 2\]
So the required value of ${x^3} - 6{x^2} + 6x$ is 2.
So, this is the required answer.
Note – Whenever we face such types of problems the key concept is simply not to substitute the value of x in the given expression but somehow to simply and to change the expression into a bigger expression containing sub expressions whose values are known to us. This concept will help you get on the right track to reach the answer.
Complete step-by-step answer:
Given equation is
$x = 2 + {2^{\dfrac{2}{3}}} + {2^{\dfrac{1}{3}}}$
So, we have to find out the value of ${x^3} - 6{x^2} + 6x$.
Now in given equation take 2 to L.H.S and take cube on both sides we have,
$ \Rightarrow x - 2 = {2^{\dfrac{2}{3}}} + {2^{\dfrac{1}{3}}}$ ………………….. (1)
\[ \Rightarrow {\left( {x - 2} \right)^3} = {\left( {{2^{\dfrac{2}{3}}} + {2^{\dfrac{1}{3}}}} \right)^3}\]
Now as we know ${\left( {a - b} \right)^3} = {a^3} - {b^3} - 3{a^2}b + 3a{b^2}$ and ${\left( {a + b} \right)^3} = {a^3} + {b^3} + 3{a^2}b + 3a{b^2}$ so, apply this property in above equation we have,
\[ \Rightarrow {x^3} - {2^3} - 3\left( {{x^2}} \right)\left( 2 \right) + 3x\left( {{2^2}} \right) = {\left( {{2^{\dfrac{2}{3}}}} \right)^3} + {\left( {{2^{\dfrac{1}{3}}}} \right)^3} + 3{\left( {{2^{\dfrac{2}{3}}}} \right)^2}\left( {{2^{\dfrac{1}{3}}}} \right) + 3\left( {{2^{\dfrac{2}{3}}}} \right){\left( {{2^{\dfrac{1}{3}}}} \right)^2}\]
Now simplify the above equation we have,
\[ \Rightarrow {x^3} - 8 - 6{x^2} + 12x = {2^2} + 2 + 3\left( {{2^{\dfrac{2}{3}}}} \right)\left( {{2^{\dfrac{1}{3}}}} \right)\left( {{2^{\dfrac{2}{3}}} + {2^{\dfrac{1}{3}}}} \right)\]
Now from equation (1) we have,
\[ \Rightarrow {x^3} - 8 - 6{x^2} + 12x = {2^2} + 2 + 3\left( {{2^{\dfrac{2}{3} + \dfrac{1}{3}}}} \right)\left( {x - 2} \right)\]
Now simplify the above equation we have,
\[ \Rightarrow {x^3} - 8 - 6{x^2} + 12x = 6 + \left( {3 \times 2\left( {x - 2} \right)} \right)\]
\[ \Rightarrow {x^3} - 8 - 6{x^2} + 12x = 6 + 6x - 12 = 6x - 6\]
\[ \Rightarrow {x^3} - 8 - 6{x^2} + 6x = - 6\]
\[ \Rightarrow {x^3} - 6{x^2} + 6x = 8 - 6 = 2\]
So the required value of ${x^3} - 6{x^2} + 6x$ is 2.
So, this is the required answer.
Note – Whenever we face such types of problems the key concept is simply not to substitute the value of x in the given expression but somehow to simply and to change the expression into a bigger expression containing sub expressions whose values are known to us. This concept will help you get on the right track to reach the answer.
Recently Updated Pages
You are awaiting your class 10th results Meanwhile class 7 english CBSE

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

Trending doubts
State similarities and differences between the laboratory class 7 physics CBSE

What is the use of kink in a clinical thermometer class 7 physics CBSE

Write a letter to the editor of the national daily class 7 english CBSE

AIM To prepare stained temporary mount of onion peel class 7 biology CBSE

Write an essay on the topic If I were a teacher class 7 english CBSE

Repeated addition of the same number is called a addition class 7 maths CBSE


