
Question: If ${k_1} = \tan 27\theta - \tan \theta $ and \[{k_2} = \dfrac{{\sin \theta }}{{\cos 3\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin 9\theta }}{{\cos 27\theta }}\], then
(A) \[{k_1} = 2{k_2}\]
(B) \[{k_1} = {k_2} + 4\]
(C) \[{k_1} = {k_2}\]
(D) None of these
Answer
578.1k+ views
Hint: Compute the expressions $\tan 3\theta - \tan \theta $, $\tan 9\theta - \tan 3\theta $ and $\tan 27\theta - \tan 9\theta $ using the identities $\sin (A - B) = \sin A\cos B - \cos A\sin B$and$\sin 2A = 2\sin A\cos A$. Add the expressions $\tan 3\theta - \tan \theta $, $\tan 9\theta - \tan 3\theta $ and $\tan 27\theta - \tan 9\theta $to get the value of$\tan 27\theta - \tan \theta $. Then substitute ${k_1}$ and ${k_2}$ to get the answer.
Complete step by step solution:
We are given ${k_1} = \tan 27\theta - \tan \theta $ and \[{k_2} = \dfrac{{\sin \theta }}{{\cos 3\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin 9\theta }}{{\cos 27\theta }}\].
Now $\tan 3\theta = \dfrac{{\sin 3\theta }}{{\cos 3\theta }}$.
This gives us $\tan 3\theta - \tan \theta = \dfrac{{\sin 3\theta }}{{\cos 3\theta }} - \dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{{\sin 3\theta \cos \theta - \sin \theta \cos 3\theta }}{{\cos 3\theta \cos \theta }}$
We know that $\sin (A - B) = \sin A\cos B - \cos A\sin B$and$\sin 2A = 2\sin A\cos A$
Let $A = 3\theta $and $B = \theta $
Therefore, we get $\tan 3\theta - \tan \theta = \dfrac{{\sin (3\theta - \theta )}}{{\cos 3\theta \cos \theta }} = \dfrac{{\sin 2\theta }}{{\cos 3\theta \cos \theta }} = \dfrac{{2\sin \theta \cos \theta }}{{\cos 3\theta \cos \theta }} = \dfrac{{2\sin \theta }}{{\cos 3\theta }}$
That is $\tan 3\theta - \tan \theta = \dfrac{{2\sin \theta }}{{\cos 3\theta }}......(1)$
Using similar methods, we get
$\tan 9\theta - \tan 3\theta = \dfrac{{2\sin 3\theta }}{{\cos 9\theta }}.....(2)$
$\tan 27\theta - \tan 9\theta = \dfrac{{2\sin 9\theta }}{{\cos 27\theta }}....(3)$
From (1), (2), and (3), we get
$
(\tan 27\theta - \tan 9\theta ) + (\tan 9\theta - \tan 3\theta ) + (\tan 3\theta - \tan \theta ) = \dfrac{{2\sin 9\theta }}{{\cos 27\theta }} + \dfrac{{2\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{2\sin \theta }}{{\cos 3\theta }} \\
\Rightarrow \tan 27\theta - \tan \theta = 2(\dfrac{{\sin 9\theta }}{{\cos 27\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin \theta }}{{\cos 3\theta }}) = 2(\dfrac{{\sin \theta }}{{\cos 3\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin 9\theta }}{{\cos 27\theta }}) \\
$
Thus, using the given information we get \[{k_1} = 2{k_2}\].
Hence\[{k_1} = 2{k_2}\] is the correct answer.
Correct Option: (A)
Note: sine, cosine and tangent are the most commonly used trigonometric ratios. Therefore, knowing the identities which relate these ratios with each other helps solve many problems.
One of the most frequently used identities is$\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$.
Complete step by step solution:
We are given ${k_1} = \tan 27\theta - \tan \theta $ and \[{k_2} = \dfrac{{\sin \theta }}{{\cos 3\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin 9\theta }}{{\cos 27\theta }}\].
Now $\tan 3\theta = \dfrac{{\sin 3\theta }}{{\cos 3\theta }}$.
This gives us $\tan 3\theta - \tan \theta = \dfrac{{\sin 3\theta }}{{\cos 3\theta }} - \dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{{\sin 3\theta \cos \theta - \sin \theta \cos 3\theta }}{{\cos 3\theta \cos \theta }}$
We know that $\sin (A - B) = \sin A\cos B - \cos A\sin B$and$\sin 2A = 2\sin A\cos A$
Let $A = 3\theta $and $B = \theta $
Therefore, we get $\tan 3\theta - \tan \theta = \dfrac{{\sin (3\theta - \theta )}}{{\cos 3\theta \cos \theta }} = \dfrac{{\sin 2\theta }}{{\cos 3\theta \cos \theta }} = \dfrac{{2\sin \theta \cos \theta }}{{\cos 3\theta \cos \theta }} = \dfrac{{2\sin \theta }}{{\cos 3\theta }}$
That is $\tan 3\theta - \tan \theta = \dfrac{{2\sin \theta }}{{\cos 3\theta }}......(1)$
Using similar methods, we get
$\tan 9\theta - \tan 3\theta = \dfrac{{2\sin 3\theta }}{{\cos 9\theta }}.....(2)$
$\tan 27\theta - \tan 9\theta = \dfrac{{2\sin 9\theta }}{{\cos 27\theta }}....(3)$
From (1), (2), and (3), we get
$
(\tan 27\theta - \tan 9\theta ) + (\tan 9\theta - \tan 3\theta ) + (\tan 3\theta - \tan \theta ) = \dfrac{{2\sin 9\theta }}{{\cos 27\theta }} + \dfrac{{2\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{2\sin \theta }}{{\cos 3\theta }} \\
\Rightarrow \tan 27\theta - \tan \theta = 2(\dfrac{{\sin 9\theta }}{{\cos 27\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin \theta }}{{\cos 3\theta }}) = 2(\dfrac{{\sin \theta }}{{\cos 3\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin 9\theta }}{{\cos 27\theta }}) \\
$
Thus, using the given information we get \[{k_1} = 2{k_2}\].
Hence\[{k_1} = 2{k_2}\] is the correct answer.
Correct Option: (A)
Note: sine, cosine and tangent are the most commonly used trigonometric ratios. Therefore, knowing the identities which relate these ratios with each other helps solve many problems.
One of the most frequently used identities is$\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

