
Question: If ${k_1} = \tan 27\theta - \tan \theta $ and \[{k_2} = \dfrac{{\sin \theta }}{{\cos 3\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin 9\theta }}{{\cos 27\theta }}\], then
(A) \[{k_1} = 2{k_2}\]
(B) \[{k_1} = {k_2} + 4\]
(C) \[{k_1} = {k_2}\]
(D) None of these
Answer
577.8k+ views
Hint: Compute the expressions $\tan 3\theta - \tan \theta $, $\tan 9\theta - \tan 3\theta $ and $\tan 27\theta - \tan 9\theta $ using the identities $\sin (A - B) = \sin A\cos B - \cos A\sin B$and$\sin 2A = 2\sin A\cos A$. Add the expressions $\tan 3\theta - \tan \theta $, $\tan 9\theta - \tan 3\theta $ and $\tan 27\theta - \tan 9\theta $to get the value of$\tan 27\theta - \tan \theta $. Then substitute ${k_1}$ and ${k_2}$ to get the answer.
Complete step by step solution:
We are given ${k_1} = \tan 27\theta - \tan \theta $ and \[{k_2} = \dfrac{{\sin \theta }}{{\cos 3\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin 9\theta }}{{\cos 27\theta }}\].
Now $\tan 3\theta = \dfrac{{\sin 3\theta }}{{\cos 3\theta }}$.
This gives us $\tan 3\theta - \tan \theta = \dfrac{{\sin 3\theta }}{{\cos 3\theta }} - \dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{{\sin 3\theta \cos \theta - \sin \theta \cos 3\theta }}{{\cos 3\theta \cos \theta }}$
We know that $\sin (A - B) = \sin A\cos B - \cos A\sin B$and$\sin 2A = 2\sin A\cos A$
Let $A = 3\theta $and $B = \theta $
Therefore, we get $\tan 3\theta - \tan \theta = \dfrac{{\sin (3\theta - \theta )}}{{\cos 3\theta \cos \theta }} = \dfrac{{\sin 2\theta }}{{\cos 3\theta \cos \theta }} = \dfrac{{2\sin \theta \cos \theta }}{{\cos 3\theta \cos \theta }} = \dfrac{{2\sin \theta }}{{\cos 3\theta }}$
That is $\tan 3\theta - \tan \theta = \dfrac{{2\sin \theta }}{{\cos 3\theta }}......(1)$
Using similar methods, we get
$\tan 9\theta - \tan 3\theta = \dfrac{{2\sin 3\theta }}{{\cos 9\theta }}.....(2)$
$\tan 27\theta - \tan 9\theta = \dfrac{{2\sin 9\theta }}{{\cos 27\theta }}....(3)$
From (1), (2), and (3), we get
$
(\tan 27\theta - \tan 9\theta ) + (\tan 9\theta - \tan 3\theta ) + (\tan 3\theta - \tan \theta ) = \dfrac{{2\sin 9\theta }}{{\cos 27\theta }} + \dfrac{{2\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{2\sin \theta }}{{\cos 3\theta }} \\
\Rightarrow \tan 27\theta - \tan \theta = 2(\dfrac{{\sin 9\theta }}{{\cos 27\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin \theta }}{{\cos 3\theta }}) = 2(\dfrac{{\sin \theta }}{{\cos 3\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin 9\theta }}{{\cos 27\theta }}) \\
$
Thus, using the given information we get \[{k_1} = 2{k_2}\].
Hence\[{k_1} = 2{k_2}\] is the correct answer.
Correct Option: (A)
Note: sine, cosine and tangent are the most commonly used trigonometric ratios. Therefore, knowing the identities which relate these ratios with each other helps solve many problems.
One of the most frequently used identities is$\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$.
Complete step by step solution:
We are given ${k_1} = \tan 27\theta - \tan \theta $ and \[{k_2} = \dfrac{{\sin \theta }}{{\cos 3\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin 9\theta }}{{\cos 27\theta }}\].
Now $\tan 3\theta = \dfrac{{\sin 3\theta }}{{\cos 3\theta }}$.
This gives us $\tan 3\theta - \tan \theta = \dfrac{{\sin 3\theta }}{{\cos 3\theta }} - \dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{{\sin 3\theta \cos \theta - \sin \theta \cos 3\theta }}{{\cos 3\theta \cos \theta }}$
We know that $\sin (A - B) = \sin A\cos B - \cos A\sin B$and$\sin 2A = 2\sin A\cos A$
Let $A = 3\theta $and $B = \theta $
Therefore, we get $\tan 3\theta - \tan \theta = \dfrac{{\sin (3\theta - \theta )}}{{\cos 3\theta \cos \theta }} = \dfrac{{\sin 2\theta }}{{\cos 3\theta \cos \theta }} = \dfrac{{2\sin \theta \cos \theta }}{{\cos 3\theta \cos \theta }} = \dfrac{{2\sin \theta }}{{\cos 3\theta }}$
That is $\tan 3\theta - \tan \theta = \dfrac{{2\sin \theta }}{{\cos 3\theta }}......(1)$
Using similar methods, we get
$\tan 9\theta - \tan 3\theta = \dfrac{{2\sin 3\theta }}{{\cos 9\theta }}.....(2)$
$\tan 27\theta - \tan 9\theta = \dfrac{{2\sin 9\theta }}{{\cos 27\theta }}....(3)$
From (1), (2), and (3), we get
$
(\tan 27\theta - \tan 9\theta ) + (\tan 9\theta - \tan 3\theta ) + (\tan 3\theta - \tan \theta ) = \dfrac{{2\sin 9\theta }}{{\cos 27\theta }} + \dfrac{{2\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{2\sin \theta }}{{\cos 3\theta }} \\
\Rightarrow \tan 27\theta - \tan \theta = 2(\dfrac{{\sin 9\theta }}{{\cos 27\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin \theta }}{{\cos 3\theta }}) = 2(\dfrac{{\sin \theta }}{{\cos 3\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin 9\theta }}{{\cos 27\theta }}) \\
$
Thus, using the given information we get \[{k_1} = 2{k_2}\].
Hence\[{k_1} = 2{k_2}\] is the correct answer.
Correct Option: (A)
Note: sine, cosine and tangent are the most commonly used trigonometric ratios. Therefore, knowing the identities which relate these ratios with each other helps solve many problems.
One of the most frequently used identities is$\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

