
What is the quadratic regression equation for the data set?
x y 3 3.45 5 6.9 6 8.79 8 12.91 10 17.48 12 22.49 15 30.85
A. $\widehat{y}=0.056{{x}^{2}}+1.278x$
B. $\widehat{y}=0.056{{x}^{2}}-1.278x-0.886$
C. $\widehat{y}=0.056{{x}^{2}}+1.278$
D. $\widehat{y}=0.056{{x}^{2}}+1.278x-0.886$
| x | y |
| 3 | 3.45 |
| 5 | 6.9 |
| 6 | 8.79 |
| 8 | 12.91 |
| 10 | 17.48 |
| 12 | 22.49 |
| 15 | 30.85 |
Answer
508.2k+ views
Hint: We need to solve the following set of equations for the values of a, b and c which will determine the coefficients of the quadratic equation. These equations are given as follows:
$\begin{align}
&\Rightarrow a\sum{{{x}_{i}}^{4}}+b\sum{{{x}_{i}}^{3}}+c\sum{{{x}_{i}}^{2}}=\sum{{{x}_{i}}^{2}{{y}_{i}}} \\
& \Rightarrow a\sum{{{x}_{i}}^{3}}+b\sum{{{x}_{i}}^{2}}+c\sum{{{x}_{i}}}=\sum{{{x}_{i}}{{y}_{i}}} \\
& \Rightarrow a\sum{{{x}_{i}}^{2}}+b\sum{{{x}_{i}}}+cn=\sum{{{y}_{i}}} \\
\end{align}$
Here, n is the number of data in the data set. The summation of the terms needs to be calculated from the given data for x and y. Using these in the above equations and by solving simultaneously, we get the values of a, b and c and using these coefficients, we create a quadratic equation.
Complete step-by-step solution:
In order to solve this question, let us first write down the equations required. They are given as follows:
$\begin{align}
& \Rightarrow a\sum{{{x}_{i}}^{4}}+b\sum{{{x}_{i}}^{3}}+c\sum{{{x}_{i}}^{2}}=\sum{{{x}_{i}}^{2}{{y}_{i}}} \\
& \Rightarrow a\sum{{{x}_{i}}^{3}}+b\sum{{{x}_{i}}^{2}}+c\sum{{{x}_{i}}}=\sum{{{x}_{i}}{{y}_{i}}} \\
& \Rightarrow a\sum{{{x}_{i}}^{2}}+b\sum{{{x}_{i}}}+cn=\sum{{{y}_{i}}} \\
\end{align}$
We find the value of $\sum{{{x}_{i}}^{4}}$ for the given data x as given below,
$\Rightarrow {{\sum{x}}_{i}}^{4}={{3}^{4}}+{{5}^{4}}+{{6}^{4}}+{{8}^{4}}+{{10}^{4}}+{{12}^{4}}+{{15}^{4}}$
Expanding each of the terms by taking the powers of 4,
$\Rightarrow {{\sum{x}}_{i}}^{4}=81+625+1296+4096+10000+20736+50625$
Adding all the terms,
$\Rightarrow {{\sum{x}}_{i}}^{4}=87459$
Similarly, we need to calculate for the other summations as shown,
For ${{\sum{x}}_{i}}^{3}$ we take the cubed values of each of the x values and find their summation as,
$\Rightarrow {{\sum{x}}_{i}}^{3}={{3}^{3}}+{{5}^{3}}+{{6}^{3}}+{{8}^{3}}+{{10}^{3}}+{{12}^{3}}+{{15}^{3}}=6983$
Similarly, for ${{\sum{x}}_{i}}^{2}$ we take the squared values of each of the x values and find their summation as,
$\Rightarrow {{\sum{x}}_{i}}^{2}={{3}^{2}}+{{5}^{2}}+{{6}^{2}}+{{8}^{2}}+{{10}^{2}}+{{12}^{2}}+{{15}^{2}}=603$
We find ${{\sum{x}}_{i}}$ and ${{\sum{y}}_{i}}$ by adding the data values in the x and y columns,
$\Rightarrow {{\sum{x}}_{i}}=3+5+6+8+10+12+15=59$
$\Rightarrow {{\sum{y}}_{i}}=3.45+6.9+8.79+12.91+17.48+22.49+30.85=102.87$
We also need the values of the terms $\sum{{{x}_{i}}^{2}{{y}_{i}}}$ and $\sum{{{x}_{i}}{{y}_{i}}}.$ This can be done by taking the square of the x term multiplied by the corresponding y terms and taking their sum for the first summation. For the second summation, we take the product of corresponding x and y terms and add them all together.
$\begin{align}
& \Rightarrow {{\sum{{{x}_{i}}}}^{2}}{{y}_{i}}={{3}^{2}}\times 3.45+{{5}^{2}}\times 6.9+{{6}^{2}}\times 8.79+{{8}^{2}}\times 12.91+{{10}^{2}}\times 17.48+{{12}^{2}}\times 22.49+{{15}^{2}}\times 30.85 \\
& \Rightarrow {{\sum{{{x}_{i}}}}^{2}}{{y}_{i}}=13274.04 \\
\end{align}$
Similarly for the second summation term,
$\begin{align}
& \Rightarrow \sum{{{x}_{i}}}{{y}_{i}}=3\times 3.45+5\times 6.9+6\times 8.79+8\times 12.91+10\times 17.48+12\times 22.49+15\times 30.85 \\
& \Rightarrow \sum{{{x}_{i}}}{{y}_{i}}=1108.3 \\
\end{align}$
Substituting all these in the given set of equations, we get the equations as,
$\begin{align}
& \Rightarrow 87459a+6983b+603c=13274.04 \\
& \Rightarrow 6983a+603b+59c=1108.3 \\
& \Rightarrow 603a+59b+7c=102.87 \\
\end{align}$
Solving for all these values of a, b and c using the method of simultaneous equations, which can be done by taking 2 equations at a time. Take the first two equations. And multiply the second equation by a fraction $\dfrac{603}{59}$ so as to make the coefficient of c same in both the equations.
$\Rightarrow 87459a+6983b+603c=13274.04\ldots \left( 1 \right)$
$\Rightarrow 71368.6271a+6162.8644b+603c=11327.2017\ldots \left( 2 \right)$
Subtracting the above two equations,
$\begin{align}
& \Rightarrow \text{ }87459a+\text{ }6983b+603c=13274.04 \\
& \Rightarrow -71368.6271a-6162.8644b-603c=-11327.2017 \\
\end{align}$
This gives us the equation with the c term eliminated.
$\Rightarrow 16090.3729a+820.1356b=1946.8383\ldots \left( 3 \right)$
Next, we consider equations
$\begin{align}
& \Rightarrow 6983a+603b+59c=1108.3 \\
& \Rightarrow 603a+59b+7c=102.87 \\
\end{align}$
We now multiply the second equation here by a fraction $\dfrac{59}{7}$ to make the coefficients of c terms equal.
$\begin{align}
& \Rightarrow 6983a+603b+59c=1108.3 \\
& \Rightarrow 5082.4286a+497.2857b+59c=867.0471 \\
\end{align}$
Now, we subtract the two equations
$\begin{align}
& \Rightarrow \text{ }6983a+\text{ }603b+59c=1108.3 \\
& \Rightarrow -5082.4286a-497.2857b-59c=-867.0471 \\
& \text{ }\overline{\text{ 1900}\text{.5714}a+105.7143b+0c\text{ = 241}\text{.2529 }\ldots \left( 4 \right)\text{ }} \\
\end{align}$
Now we consider the equations 3 and 4 and multiply the equation 4 by a fraction $\dfrac{820.1356}{105.7143}$ to make the coefficient of b same and subtract the two equations as,
$\begin{align}
& \Rightarrow 16090.3729a+820.1356b=1946.8383 \\
& \Rightarrow -\text{14744}\text{.7059}a-820.1356b\text{ = }-1871.6492 \\
& \text{ }\overline{\text{ 1345}\text{.667}a\text{ =+75}\text{.1891 }} \\
\end{align}$
Now, we divide both sides of the resulting equation by 1345.667 to obtain the value of a.
$\Rightarrow a=\dfrac{75.1891}{1345.667}=0.05587$
Substituting this in the equation 3,
$\Rightarrow 16090.3729\times 0.05587+820.1356b=1946.8383$
Multiplying the terms,
$\Rightarrow 898.9691+820.1356b=1946.8383$
Subtracting both sides by 898.9691 and dividing both sides by 820.1356,
$\Rightarrow 820.1356b=1047.8692$
$\Rightarrow b=\dfrac{1047.8692}{820.1356}=1.2776$
Now, we take the third equation in the set of simultaneous equations and substitute the values of a and b to calculate c.
$\Rightarrow 603\times 0.05587+59\times 1.2776+7c=102.87$
Multiplying and adding the terms on the left-hand side,
$\Rightarrow 109.0680+7c=102.87$
Subtracting both sides by 109.0680 and dividing both sides by 102.87,
$\Rightarrow 7c=102.87-109.0680$
$\Rightarrow c=\dfrac{-6.1980}{7}=-0.8854$
We have the values of a, b and c as,
$\Rightarrow a=0.05587,b=1.2776,c=-0.8854$
Rounding them all to 3 decimal digits, we get
$\Rightarrow a=0.056,b=1.278,c=-0.886$
Forming a quadratic equation with these values as $a{{x}^{2}}+bx+c,$
$\Rightarrow \widehat{y}=0.056{{x}^{2}}+1.278x-0.886$
Hence, the correct option is D.
Note: We need to know the concept of regression equation and its formation for a given set of data. It is important to know the method of solving simultaneous equations in order to obtain a solution for such problems. Students are required to know how to solve simultaneous equations.
$\begin{align}
&\Rightarrow a\sum{{{x}_{i}}^{4}}+b\sum{{{x}_{i}}^{3}}+c\sum{{{x}_{i}}^{2}}=\sum{{{x}_{i}}^{2}{{y}_{i}}} \\
& \Rightarrow a\sum{{{x}_{i}}^{3}}+b\sum{{{x}_{i}}^{2}}+c\sum{{{x}_{i}}}=\sum{{{x}_{i}}{{y}_{i}}} \\
& \Rightarrow a\sum{{{x}_{i}}^{2}}+b\sum{{{x}_{i}}}+cn=\sum{{{y}_{i}}} \\
\end{align}$
Here, n is the number of data in the data set. The summation of the terms needs to be calculated from the given data for x and y. Using these in the above equations and by solving simultaneously, we get the values of a, b and c and using these coefficients, we create a quadratic equation.
Complete step-by-step solution:
In order to solve this question, let us first write down the equations required. They are given as follows:
$\begin{align}
& \Rightarrow a\sum{{{x}_{i}}^{4}}+b\sum{{{x}_{i}}^{3}}+c\sum{{{x}_{i}}^{2}}=\sum{{{x}_{i}}^{2}{{y}_{i}}} \\
& \Rightarrow a\sum{{{x}_{i}}^{3}}+b\sum{{{x}_{i}}^{2}}+c\sum{{{x}_{i}}}=\sum{{{x}_{i}}{{y}_{i}}} \\
& \Rightarrow a\sum{{{x}_{i}}^{2}}+b\sum{{{x}_{i}}}+cn=\sum{{{y}_{i}}} \\
\end{align}$
We find the value of $\sum{{{x}_{i}}^{4}}$ for the given data x as given below,
$\Rightarrow {{\sum{x}}_{i}}^{4}={{3}^{4}}+{{5}^{4}}+{{6}^{4}}+{{8}^{4}}+{{10}^{4}}+{{12}^{4}}+{{15}^{4}}$
Expanding each of the terms by taking the powers of 4,
$\Rightarrow {{\sum{x}}_{i}}^{4}=81+625+1296+4096+10000+20736+50625$
Adding all the terms,
$\Rightarrow {{\sum{x}}_{i}}^{4}=87459$
Similarly, we need to calculate for the other summations as shown,
For ${{\sum{x}}_{i}}^{3}$ we take the cubed values of each of the x values and find their summation as,
$\Rightarrow {{\sum{x}}_{i}}^{3}={{3}^{3}}+{{5}^{3}}+{{6}^{3}}+{{8}^{3}}+{{10}^{3}}+{{12}^{3}}+{{15}^{3}}=6983$
Similarly, for ${{\sum{x}}_{i}}^{2}$ we take the squared values of each of the x values and find their summation as,
$\Rightarrow {{\sum{x}}_{i}}^{2}={{3}^{2}}+{{5}^{2}}+{{6}^{2}}+{{8}^{2}}+{{10}^{2}}+{{12}^{2}}+{{15}^{2}}=603$
We find ${{\sum{x}}_{i}}$ and ${{\sum{y}}_{i}}$ by adding the data values in the x and y columns,
$\Rightarrow {{\sum{x}}_{i}}=3+5+6+8+10+12+15=59$
$\Rightarrow {{\sum{y}}_{i}}=3.45+6.9+8.79+12.91+17.48+22.49+30.85=102.87$
We also need the values of the terms $\sum{{{x}_{i}}^{2}{{y}_{i}}}$ and $\sum{{{x}_{i}}{{y}_{i}}}.$ This can be done by taking the square of the x term multiplied by the corresponding y terms and taking their sum for the first summation. For the second summation, we take the product of corresponding x and y terms and add them all together.
$\begin{align}
& \Rightarrow {{\sum{{{x}_{i}}}}^{2}}{{y}_{i}}={{3}^{2}}\times 3.45+{{5}^{2}}\times 6.9+{{6}^{2}}\times 8.79+{{8}^{2}}\times 12.91+{{10}^{2}}\times 17.48+{{12}^{2}}\times 22.49+{{15}^{2}}\times 30.85 \\
& \Rightarrow {{\sum{{{x}_{i}}}}^{2}}{{y}_{i}}=13274.04 \\
\end{align}$
Similarly for the second summation term,
$\begin{align}
& \Rightarrow \sum{{{x}_{i}}}{{y}_{i}}=3\times 3.45+5\times 6.9+6\times 8.79+8\times 12.91+10\times 17.48+12\times 22.49+15\times 30.85 \\
& \Rightarrow \sum{{{x}_{i}}}{{y}_{i}}=1108.3 \\
\end{align}$
Substituting all these in the given set of equations, we get the equations as,
$\begin{align}
& \Rightarrow 87459a+6983b+603c=13274.04 \\
& \Rightarrow 6983a+603b+59c=1108.3 \\
& \Rightarrow 603a+59b+7c=102.87 \\
\end{align}$
Solving for all these values of a, b and c using the method of simultaneous equations, which can be done by taking 2 equations at a time. Take the first two equations. And multiply the second equation by a fraction $\dfrac{603}{59}$ so as to make the coefficient of c same in both the equations.
$\Rightarrow 87459a+6983b+603c=13274.04\ldots \left( 1 \right)$
$\Rightarrow 71368.6271a+6162.8644b+603c=11327.2017\ldots \left( 2 \right)$
Subtracting the above two equations,
$\begin{align}
& \Rightarrow \text{ }87459a+\text{ }6983b+603c=13274.04 \\
& \Rightarrow -71368.6271a-6162.8644b-603c=-11327.2017 \\
\end{align}$
This gives us the equation with the c term eliminated.
$\Rightarrow 16090.3729a+820.1356b=1946.8383\ldots \left( 3 \right)$
Next, we consider equations
$\begin{align}
& \Rightarrow 6983a+603b+59c=1108.3 \\
& \Rightarrow 603a+59b+7c=102.87 \\
\end{align}$
We now multiply the second equation here by a fraction $\dfrac{59}{7}$ to make the coefficients of c terms equal.
$\begin{align}
& \Rightarrow 6983a+603b+59c=1108.3 \\
& \Rightarrow 5082.4286a+497.2857b+59c=867.0471 \\
\end{align}$
Now, we subtract the two equations
$\begin{align}
& \Rightarrow \text{ }6983a+\text{ }603b+59c=1108.3 \\
& \Rightarrow -5082.4286a-497.2857b-59c=-867.0471 \\
& \text{ }\overline{\text{ 1900}\text{.5714}a+105.7143b+0c\text{ = 241}\text{.2529 }\ldots \left( 4 \right)\text{ }} \\
\end{align}$
Now we consider the equations 3 and 4 and multiply the equation 4 by a fraction $\dfrac{820.1356}{105.7143}$ to make the coefficient of b same and subtract the two equations as,
$\begin{align}
& \Rightarrow 16090.3729a+820.1356b=1946.8383 \\
& \Rightarrow -\text{14744}\text{.7059}a-820.1356b\text{ = }-1871.6492 \\
& \text{ }\overline{\text{ 1345}\text{.667}a\text{ =+75}\text{.1891 }} \\
\end{align}$
Now, we divide both sides of the resulting equation by 1345.667 to obtain the value of a.
$\Rightarrow a=\dfrac{75.1891}{1345.667}=0.05587$
Substituting this in the equation 3,
$\Rightarrow 16090.3729\times 0.05587+820.1356b=1946.8383$
Multiplying the terms,
$\Rightarrow 898.9691+820.1356b=1946.8383$
Subtracting both sides by 898.9691 and dividing both sides by 820.1356,
$\Rightarrow 820.1356b=1047.8692$
$\Rightarrow b=\dfrac{1047.8692}{820.1356}=1.2776$
Now, we take the third equation in the set of simultaneous equations and substitute the values of a and b to calculate c.
$\Rightarrow 603\times 0.05587+59\times 1.2776+7c=102.87$
Multiplying and adding the terms on the left-hand side,
$\Rightarrow 109.0680+7c=102.87$
Subtracting both sides by 109.0680 and dividing both sides by 102.87,
$\Rightarrow 7c=102.87-109.0680$
$\Rightarrow c=\dfrac{-6.1980}{7}=-0.8854$
We have the values of a, b and c as,
$\Rightarrow a=0.05587,b=1.2776,c=-0.8854$
Rounding them all to 3 decimal digits, we get
$\Rightarrow a=0.056,b=1.278,c=-0.886$
Forming a quadratic equation with these values as $a{{x}^{2}}+bx+c,$
$\Rightarrow \widehat{y}=0.056{{x}^{2}}+1.278x-0.886$
Hence, the correct option is D.
Note: We need to know the concept of regression equation and its formation for a given set of data. It is important to know the method of solving simultaneous equations in order to obtain a solution for such problems. Students are required to know how to solve simultaneous equations.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

