
Prove the trigonometric expression $\sin \left( x-\dfrac{\pi }{6} \right)+\cos \left( x-\dfrac{\pi }{3} \right)=\sqrt{3}\sin x$
Answer
612.6k+ views
Hint:Here we need to apply expansion formulas of sine and cosine in L.H.S i.e $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$ and $\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B$ in equation $\sin \left( x-\dfrac{\pi }{6} \right)+\cos \left( x-\dfrac{\pi }{3} \right)$ to get required R.HS.
Complete step-by-step answer:
Consider trigonometric expression $\sin \left( x-\dfrac{\pi }{6} \right)+\cos \left( x-\dfrac{\pi }{3} \right)=\sqrt{3}\sin x...(i)$
For proving the expressions start first by considering the left or right hand side of expressions. Here we choose left hand side of the expression $(i)$
So we consider $\sin \left( x-\dfrac{\pi }{6} \right)+\cos \left( x-\dfrac{\pi }{3} \right)...(ii)$
Now using formula $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$ we expand the first term $\sin \left( x-\dfrac{\pi }{6} \right)$ along with substitutions $A=x$ and $B=\dfrac{\pi }{6}$
This implies that $\sin \left( x-\dfrac{\pi }{6} \right)=\sin x\cos \dfrac{\pi }{6}-\cos x\sin \dfrac{\pi }{6}...(iii)$
Now by using the values of $\cos \dfrac{\pi }{6}=\dfrac{\sqrt{3}}{2}$ and $\sin \dfrac{\pi }{6}=\dfrac{1}{2}$ and substituting these values in equation $(iii)$ we get $\sin x\cos \dfrac{\pi }{6}-\cos x\sin \dfrac{\pi }{6}=\sin x\left( \dfrac{\sqrt{3}}{2} \right)-\cos x\left( \dfrac{1}{2} \right)$
Similarly we apply the formula $\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B$ in the second term of the left hand side of the expression $\cos \left( x-\dfrac{\pi }{3} \right)$
Simultaneously doing substitution as $A=x$ and $B=\dfrac{\pi }{3}$ in the expression. This implies $\cos \left( x-\dfrac{\pi }{3} \right)=\cos x\cos \left( \dfrac{\pi }{3} \right)+\sin x\sin \left( \dfrac{\pi }{3} \right)...(iv)$
Now using trigonometric values of $\cos \left( \dfrac{\pi }{3} \right)=\dfrac{1}{2}$ and $\sin \left( \dfrac{\pi }{3} \right)=\dfrac{\sqrt{3}}{2}$ in $(iv)$
By substituting these values in $(iv)$ we have $\cos x\cos \left( \dfrac{\pi }{3} \right)+\sin x\sin \left( \dfrac{\pi }{3} \right)=\dfrac{1}{2}\cos x+\dfrac{\sqrt{3}}{2}\sin x$
Now consider the simplifications of the terms. This implies $\sin \left( x-\dfrac{\pi }{6} \right)=\left( \dfrac{\sqrt{3}}{2} \right)\sin x-\left( \dfrac{1}{2} \right)\cos x$ and $\cos \left( x-\dfrac{\pi }{3} \right)=\dfrac{1}{2}\cos x+\dfrac{\sqrt{3}}{2}\sin x$
Thus after substituting these values in equation$(ii)$ the equation results into simpler term such as,
$\begin{align}
& \sin \left( x-\dfrac{\pi }{6} \right)+\cos \left( x-\dfrac{\pi }{3} \right)=\left( \dfrac{\sqrt{3}}{2} \right)\sin x-\left( \dfrac{1}{2} \right)\cos x+\left( \dfrac{1}{2} \right)\cos x+\dfrac{\sqrt{3}}{2}\sin x \\
& \sin \left( x-\dfrac{\pi }{6} \right)+\cos \left( x-\dfrac{\pi }{3} \right)=\left( \dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{3}}{2} \right)\sin x \\
& \sin \left( x-\dfrac{\pi }{6} \right)+\cos \left( x-\dfrac{\pi }{3} \right)=\left( \dfrac{2\sqrt{3}}{2} \right)\sin x \\
\end{align}$
By cancelling 2 from numerator and denominator we have $\sin \left( x-\dfrac{\pi }{6} \right)+\cos \left( x-\dfrac{\pi }{3} \right)=\sqrt{3}\sin x$
Clearly $\sqrt{3}\operatorname{Sin}x$ is equal to the right side of expression $(i)$ , so the result is proved.
Hence $\sin \left( x-\dfrac{\pi }{6} \right)+\cos \left( x-\dfrac{\pi }{3} \right)=\sqrt{3}\sin x$ is proved.
Note: Notice the sign is negative or positive in between the angles. Accordingly, write formulas. Also, values of the trigonometric table are important here. After using correct formulas along with right trigonometric values will easily result in the right hand side. Take care while substituting trigonometric values. If a trigonometric value is substituted then it should come before a variable. For example write $\sqrt{3}\sin x$ instead of $\sin x\left( \sqrt{3} \right)$ otherwise, root 3 gets multiplied to angle x by mistake.
Complete step-by-step answer:
Consider trigonometric expression $\sin \left( x-\dfrac{\pi }{6} \right)+\cos \left( x-\dfrac{\pi }{3} \right)=\sqrt{3}\sin x...(i)$
For proving the expressions start first by considering the left or right hand side of expressions. Here we choose left hand side of the expression $(i)$
So we consider $\sin \left( x-\dfrac{\pi }{6} \right)+\cos \left( x-\dfrac{\pi }{3} \right)...(ii)$
Now using formula $\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B$ we expand the first term $\sin \left( x-\dfrac{\pi }{6} \right)$ along with substitutions $A=x$ and $B=\dfrac{\pi }{6}$
This implies that $\sin \left( x-\dfrac{\pi }{6} \right)=\sin x\cos \dfrac{\pi }{6}-\cos x\sin \dfrac{\pi }{6}...(iii)$
Now by using the values of $\cos \dfrac{\pi }{6}=\dfrac{\sqrt{3}}{2}$ and $\sin \dfrac{\pi }{6}=\dfrac{1}{2}$ and substituting these values in equation $(iii)$ we get $\sin x\cos \dfrac{\pi }{6}-\cos x\sin \dfrac{\pi }{6}=\sin x\left( \dfrac{\sqrt{3}}{2} \right)-\cos x\left( \dfrac{1}{2} \right)$
Similarly we apply the formula $\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B$ in the second term of the left hand side of the expression $\cos \left( x-\dfrac{\pi }{3} \right)$
Simultaneously doing substitution as $A=x$ and $B=\dfrac{\pi }{3}$ in the expression. This implies $\cos \left( x-\dfrac{\pi }{3} \right)=\cos x\cos \left( \dfrac{\pi }{3} \right)+\sin x\sin \left( \dfrac{\pi }{3} \right)...(iv)$
Now using trigonometric values of $\cos \left( \dfrac{\pi }{3} \right)=\dfrac{1}{2}$ and $\sin \left( \dfrac{\pi }{3} \right)=\dfrac{\sqrt{3}}{2}$ in $(iv)$
By substituting these values in $(iv)$ we have $\cos x\cos \left( \dfrac{\pi }{3} \right)+\sin x\sin \left( \dfrac{\pi }{3} \right)=\dfrac{1}{2}\cos x+\dfrac{\sqrt{3}}{2}\sin x$
Now consider the simplifications of the terms. This implies $\sin \left( x-\dfrac{\pi }{6} \right)=\left( \dfrac{\sqrt{3}}{2} \right)\sin x-\left( \dfrac{1}{2} \right)\cos x$ and $\cos \left( x-\dfrac{\pi }{3} \right)=\dfrac{1}{2}\cos x+\dfrac{\sqrt{3}}{2}\sin x$
Thus after substituting these values in equation$(ii)$ the equation results into simpler term such as,
$\begin{align}
& \sin \left( x-\dfrac{\pi }{6} \right)+\cos \left( x-\dfrac{\pi }{3} \right)=\left( \dfrac{\sqrt{3}}{2} \right)\sin x-\left( \dfrac{1}{2} \right)\cos x+\left( \dfrac{1}{2} \right)\cos x+\dfrac{\sqrt{3}}{2}\sin x \\
& \sin \left( x-\dfrac{\pi }{6} \right)+\cos \left( x-\dfrac{\pi }{3} \right)=\left( \dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{3}}{2} \right)\sin x \\
& \sin \left( x-\dfrac{\pi }{6} \right)+\cos \left( x-\dfrac{\pi }{3} \right)=\left( \dfrac{2\sqrt{3}}{2} \right)\sin x \\
\end{align}$
By cancelling 2 from numerator and denominator we have $\sin \left( x-\dfrac{\pi }{6} \right)+\cos \left( x-\dfrac{\pi }{3} \right)=\sqrt{3}\sin x$
Clearly $\sqrt{3}\operatorname{Sin}x$ is equal to the right side of expression $(i)$ , so the result is proved.
Hence $\sin \left( x-\dfrac{\pi }{6} \right)+\cos \left( x-\dfrac{\pi }{3} \right)=\sqrt{3}\sin x$ is proved.
Note: Notice the sign is negative or positive in between the angles. Accordingly, write formulas. Also, values of the trigonometric table are important here. After using correct formulas along with right trigonometric values will easily result in the right hand side. Take care while substituting trigonometric values. If a trigonometric value is substituted then it should come before a variable. For example write $\sqrt{3}\sin x$ instead of $\sin x\left( \sqrt{3} \right)$ otherwise, root 3 gets multiplied to angle x by mistake.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

