
Prove the result $2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)={{\tan }^{-1}}\left( \dfrac{4}{7} \right)$.
Answer
606.9k+ views
Hint:We will apply the formula $2{{\tan }^{-1}}\left( x \right)={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)$ in order to solve the question. We will apply the trick of first considering the left hand side and then verify it to the right hand side of the expression. We will also use ${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)$ to solve the question further.
Complete step-by-step answer:
We will start solving the question by taking the expression $2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)={{\tan }^{-1}}\left( \dfrac{4}{7} \right)...(i)$ into consideration. We will focus on the left hand side of the expression which is given by $2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)$. Now we will apply the formula of trigonometry. The formula is as $2{{\tan }^{-1}}\left( x \right)={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)$. Therefore the left hand side of the expression changes into
$\begin{align}
& 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)={{\tan }^{-1}}\left( \dfrac{2\left( \dfrac{1}{5} \right)}{1-{{\left( \dfrac{1}{5} \right)}^{2}}} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{1}}{\dfrac{24}{5}} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)={{\tan }^{-1}}\left( \dfrac{2}{1}\times \dfrac{5}{24} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)={{\tan }^{-1}}\left( \dfrac{5}{12} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right) \\
\end{align}$
Now we will apply the formula ${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)$. Therefore, we have
$\begin{align}
& 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)={{\tan }^{-1}}\left( \dfrac{5}{12} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)={{\tan }^{-1}}\left( \dfrac{\dfrac{5}{12}+\dfrac{1}{8}}{1-\left( \dfrac{5}{12} \right)\left( \dfrac{1}{8} \right)} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)={{\tan }^{-1}}\left( \dfrac{\dfrac{10+3}{24}}{\dfrac{96-5}{96}} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)={{\tan }^{-1}}\left( \dfrac{\dfrac{13}{24}}{\dfrac{91}{96}} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)={{\tan }^{-1}}\left( \dfrac{13}{24}\times \dfrac{96}{91} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)={{\tan }^{-1}}\left( \dfrac{4}{7} \right) \\
\end{align}$
And since it is equal to the right hand side of the expression (i). Therefore the two given sides are equal.
Hence, we have proved $2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)={{\tan }^{-1}}\left( \dfrac{4}{7} \right)$.
Note: We can also split $2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)$ into ${{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{5} \right)$ instead of using the formula $2{{\tan }^{-1}}\left( x \right)={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)$ and applying the formula ${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)$ to it. This may ease in solving the question. Be aware of doing calculation mistakes otherwise the answer will be wrong and the verification will fail. While solving ${{\tan }^{-1}}\left( \dfrac{\dfrac{2}{1}}{\dfrac{24}{5}} \right)$ write ${{\tan }^{-1}}\left( \dfrac{2}{1}\times \dfrac{5}{24} \right)$ instead of ${{\tan }^{-1}}\left( \dfrac{2}{1}\times \dfrac{24}{5} \right)$. This is due to the fact that $\dfrac{\dfrac{a}{b}}{\dfrac{c}{d}}=\dfrac{a}{b}\times \dfrac{d}{c}$. That is why we have done calculation in this manner.
Complete step-by-step answer:
We will start solving the question by taking the expression $2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)={{\tan }^{-1}}\left( \dfrac{4}{7} \right)...(i)$ into consideration. We will focus on the left hand side of the expression which is given by $2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)$. Now we will apply the formula of trigonometry. The formula is as $2{{\tan }^{-1}}\left( x \right)={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)$. Therefore the left hand side of the expression changes into
$\begin{align}
& 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)={{\tan }^{-1}}\left( \dfrac{2\left( \dfrac{1}{5} \right)}{1-{{\left( \dfrac{1}{5} \right)}^{2}}} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{1}}{\dfrac{24}{5}} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)={{\tan }^{-1}}\left( \dfrac{2}{1}\times \dfrac{5}{24} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)={{\tan }^{-1}}\left( \dfrac{5}{12} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right) \\
\end{align}$
Now we will apply the formula ${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)$. Therefore, we have
$\begin{align}
& 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)={{\tan }^{-1}}\left( \dfrac{5}{12} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)={{\tan }^{-1}}\left( \dfrac{\dfrac{5}{12}+\dfrac{1}{8}}{1-\left( \dfrac{5}{12} \right)\left( \dfrac{1}{8} \right)} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)={{\tan }^{-1}}\left( \dfrac{\dfrac{10+3}{24}}{\dfrac{96-5}{96}} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)={{\tan }^{-1}}\left( \dfrac{\dfrac{13}{24}}{\dfrac{91}{96}} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)={{\tan }^{-1}}\left( \dfrac{13}{24}\times \dfrac{96}{91} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)={{\tan }^{-1}}\left( \dfrac{4}{7} \right) \\
\end{align}$
And since it is equal to the right hand side of the expression (i). Therefore the two given sides are equal.
Hence, we have proved $2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)={{\tan }^{-1}}\left( \dfrac{4}{7} \right)$.
Note: We can also split $2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)$ into ${{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{5} \right)$ instead of using the formula $2{{\tan }^{-1}}\left( x \right)={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)$ and applying the formula ${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)$ to it. This may ease in solving the question. Be aware of doing calculation mistakes otherwise the answer will be wrong and the verification will fail. While solving ${{\tan }^{-1}}\left( \dfrac{\dfrac{2}{1}}{\dfrac{24}{5}} \right)$ write ${{\tan }^{-1}}\left( \dfrac{2}{1}\times \dfrac{5}{24} \right)$ instead of ${{\tan }^{-1}}\left( \dfrac{2}{1}\times \dfrac{24}{5} \right)$. This is due to the fact that $\dfrac{\dfrac{a}{b}}{\dfrac{c}{d}}=\dfrac{a}{b}\times \dfrac{d}{c}$. That is why we have done calculation in this manner.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

