
Prove the following trigonometric function: $1+\dfrac{{{\tan }^{2}}A}{1+\sec A}=\sec A$.
Answer
611.4k+ views
Hint: We will be using the concept of trigonometric function and using trigonometric identities ${{\sec }^{2}}A-{{\tan }^{2}}A=1$ and basic algebraic identity ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$ for solving the question.
Complete step-by-step answer:
Now, we have to prove that,
$1+\dfrac{{{\tan }^{2}}A}{1+\sec A}=\sec A$
Now, we will first take the left-hand side of the equation and prove it to be equal to the right hand side. In left hand side we have,
$1+\dfrac{{{\tan }^{2}}A}{1+\sec A}$
Now, we know the trigonometric identity that,
$\begin{align}
& {{\sec }^{2}}A-{{\tan }^{2}}A=1 \\
& \Rightarrow {{\sec }^{2}}A-1={{\tan }^{2}}A.............\left( 1 \right) \\
\end{align}$
Now, we will substitute the value of ${{\tan }^{2}}A$ from (1) in $1+\dfrac{{{\tan }^{2}}A}{1+\sec A}$ .
So, we have,
$1+\dfrac{{{\tan }^{2}}A}{1+\sec A}=1+\dfrac{{{\sec }^{2}}A-1}{1+\sec A}$
Now, we know the algebraic identity that ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$. Therefore, we have,
$=1+\dfrac{\left( \sec A-1 \right)\left( \sec A+1 \right)}{\left( 1+\sec A \right)}$
Now, $1+\sec A$ will get canceled in both numerator and denominator. So, we have,
$\begin{align}
& =1+\sec A-1 \\
& 1+\dfrac{{{\tan }^{2}}A}{1+\sec A}=\sec A \\
\end{align}$
Since, L.H.S. = R.H.S. Therefore, we have proved that,
$1+\dfrac{{{\tan }^{2}}A}{1+\sec A}=\sec A$.
Note: To solve these type of question it is important to remember trigonometric identities and formulas like ${{\sec }^{2}}A-{{\tan }^{2}}A=1$, ${{\sin }^{2}}A+{{\cos }^{2}}A=1$ and basic algebraic identities like ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$ for solving these types of questions.
Complete step-by-step answer:
Now, we have to prove that,
$1+\dfrac{{{\tan }^{2}}A}{1+\sec A}=\sec A$
Now, we will first take the left-hand side of the equation and prove it to be equal to the right hand side. In left hand side we have,
$1+\dfrac{{{\tan }^{2}}A}{1+\sec A}$
Now, we know the trigonometric identity that,
$\begin{align}
& {{\sec }^{2}}A-{{\tan }^{2}}A=1 \\
& \Rightarrow {{\sec }^{2}}A-1={{\tan }^{2}}A.............\left( 1 \right) \\
\end{align}$
Now, we will substitute the value of ${{\tan }^{2}}A$ from (1) in $1+\dfrac{{{\tan }^{2}}A}{1+\sec A}$ .
So, we have,
$1+\dfrac{{{\tan }^{2}}A}{1+\sec A}=1+\dfrac{{{\sec }^{2}}A-1}{1+\sec A}$
Now, we know the algebraic identity that ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$. Therefore, we have,
$=1+\dfrac{\left( \sec A-1 \right)\left( \sec A+1 \right)}{\left( 1+\sec A \right)}$
Now, $1+\sec A$ will get canceled in both numerator and denominator. So, we have,
$\begin{align}
& =1+\sec A-1 \\
& 1+\dfrac{{{\tan }^{2}}A}{1+\sec A}=\sec A \\
\end{align}$
Since, L.H.S. = R.H.S. Therefore, we have proved that,
$1+\dfrac{{{\tan }^{2}}A}{1+\sec A}=\sec A$.
Note: To solve these type of question it is important to remember trigonometric identities and formulas like ${{\sec }^{2}}A-{{\tan }^{2}}A=1$, ${{\sin }^{2}}A+{{\cos }^{2}}A=1$ and basic algebraic identities like ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$ for solving these types of questions.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Draw the diagram showing the germination of pollen class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

