
Prove the following trigonometric equation:
\[\dfrac{{\tan \theta + \sec \theta - 1}}{{\tan \theta - \sec \theta + 1}} = \dfrac{{1 + \sin \theta }}{{\cos \theta }}\]
Answer
590.4k+ views
Hint: To prove this question we have to start from LHS and using standard results like $\left( {{{\sec }^2}\theta - {{\tan }^2}\theta = 1} \right)$ we have to proceed to get RHS. To get RHS we have to use some common sense that what changes should be made to proceed further.
Complete step-by-step answer:
We have LHS,
$ \Rightarrow \dfrac{{\tan \theta + \sec \theta - 1}}{{\tan \theta - \sec \theta + 1}}$
Here we are not getting any clue how to proceed so we use $\left( {{{\sec }^2}\theta - {{\tan }^2}\theta = 1} \right)$ to proceed further
$ = \dfrac{{\tan \theta + \sec \theta - \left( {{{\sec }^2}\theta - {{\tan }^2}\theta } \right)}}{{\tan \theta - \sec \theta + 1}}$
Now use property $\left( {{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)} \right)$
$ = \dfrac{{\tan \theta + \sec \theta - \left\{ {\left( {\sec \theta + \tan \theta } \right)\left( {\sec \theta - \tan \theta } \right)} \right\}}}{{\tan \theta - \sec \theta + 1}}$
Now taking $\left( {\sec \theta + \tan \theta } \right)$ common we get
$ = \dfrac{{\left( {\tan \theta + \sec \theta } \right)\left( {1 - \left( {\sec \theta - \tan \theta } \right)} \right)}}{{\tan \theta - \sec \theta + 1}}$
$ = \dfrac{{\left( {\tan \theta + \sec \theta } \right)\left( {1 - \sec \theta + \tan \theta } \right)}}{{\left( {1 - \sec \theta + \tan \theta } \right)}}$
On cancel out we get,
$ = \tan \theta + \sec \theta $
Now we can write $\left( {\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }},\sec \theta = \dfrac{1}{{\cos \theta }}} \right)$
$
= \dfrac{{\sin \theta }}{{\cos \theta }} + \dfrac{1}{{\cos \theta }} \\
= \dfrac{{\sin \theta + 1}}{{\cos \theta }} \\
$
=RHS
Hence Proved.
Note: Whenever we get this type of question the key concept of solving is either we have to start from RHS or LHS and proceed to get required results using standard results. To prove this type of question we have to use the presence of mind that what transformation should tend to require a result.
Complete step-by-step answer:
We have LHS,
$ \Rightarrow \dfrac{{\tan \theta + \sec \theta - 1}}{{\tan \theta - \sec \theta + 1}}$
Here we are not getting any clue how to proceed so we use $\left( {{{\sec }^2}\theta - {{\tan }^2}\theta = 1} \right)$ to proceed further
$ = \dfrac{{\tan \theta + \sec \theta - \left( {{{\sec }^2}\theta - {{\tan }^2}\theta } \right)}}{{\tan \theta - \sec \theta + 1}}$
Now use property $\left( {{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)} \right)$
$ = \dfrac{{\tan \theta + \sec \theta - \left\{ {\left( {\sec \theta + \tan \theta } \right)\left( {\sec \theta - \tan \theta } \right)} \right\}}}{{\tan \theta - \sec \theta + 1}}$
Now taking $\left( {\sec \theta + \tan \theta } \right)$ common we get
$ = \dfrac{{\left( {\tan \theta + \sec \theta } \right)\left( {1 - \left( {\sec \theta - \tan \theta } \right)} \right)}}{{\tan \theta - \sec \theta + 1}}$
$ = \dfrac{{\left( {\tan \theta + \sec \theta } \right)\left( {1 - \sec \theta + \tan \theta } \right)}}{{\left( {1 - \sec \theta + \tan \theta } \right)}}$
On cancel out we get,
$ = \tan \theta + \sec \theta $
Now we can write $\left( {\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }},\sec \theta = \dfrac{1}{{\cos \theta }}} \right)$
$
= \dfrac{{\sin \theta }}{{\cos \theta }} + \dfrac{1}{{\cos \theta }} \\
= \dfrac{{\sin \theta + 1}}{{\cos \theta }} \\
$
=RHS
Hence Proved.
Note: Whenever we get this type of question the key concept of solving is either we have to start from RHS or LHS and proceed to get required results using standard results. To prove this type of question we have to use the presence of mind that what transformation should tend to require a result.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

