
Prove the following trigonometric equation:
\[\dfrac{{\tan \theta + \sec \theta - 1}}{{\tan \theta - \sec \theta + 1}} = \dfrac{{1 + \sin \theta }}{{\cos \theta }}\]
Answer
615.9k+ views
Hint: To prove this question we have to start from LHS and using standard results like $\left( {{{\sec }^2}\theta - {{\tan }^2}\theta = 1} \right)$ we have to proceed to get RHS. To get RHS we have to use some common sense that what changes should be made to proceed further.
Complete step-by-step answer:
We have LHS,
$ \Rightarrow \dfrac{{\tan \theta + \sec \theta - 1}}{{\tan \theta - \sec \theta + 1}}$
Here we are not getting any clue how to proceed so we use $\left( {{{\sec }^2}\theta - {{\tan }^2}\theta = 1} \right)$ to proceed further
$ = \dfrac{{\tan \theta + \sec \theta - \left( {{{\sec }^2}\theta - {{\tan }^2}\theta } \right)}}{{\tan \theta - \sec \theta + 1}}$
Now use property $\left( {{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)} \right)$
$ = \dfrac{{\tan \theta + \sec \theta - \left\{ {\left( {\sec \theta + \tan \theta } \right)\left( {\sec \theta - \tan \theta } \right)} \right\}}}{{\tan \theta - \sec \theta + 1}}$
Now taking $\left( {\sec \theta + \tan \theta } \right)$ common we get
$ = \dfrac{{\left( {\tan \theta + \sec \theta } \right)\left( {1 - \left( {\sec \theta - \tan \theta } \right)} \right)}}{{\tan \theta - \sec \theta + 1}}$
$ = \dfrac{{\left( {\tan \theta + \sec \theta } \right)\left( {1 - \sec \theta + \tan \theta } \right)}}{{\left( {1 - \sec \theta + \tan \theta } \right)}}$
On cancel out we get,
$ = \tan \theta + \sec \theta $
Now we can write $\left( {\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }},\sec \theta = \dfrac{1}{{\cos \theta }}} \right)$
$
= \dfrac{{\sin \theta }}{{\cos \theta }} + \dfrac{1}{{\cos \theta }} \\
= \dfrac{{\sin \theta + 1}}{{\cos \theta }} \\
$
=RHS
Hence Proved.
Note: Whenever we get this type of question the key concept of solving is either we have to start from RHS or LHS and proceed to get required results using standard results. To prove this type of question we have to use the presence of mind that what transformation should tend to require a result.
Complete step-by-step answer:
We have LHS,
$ \Rightarrow \dfrac{{\tan \theta + \sec \theta - 1}}{{\tan \theta - \sec \theta + 1}}$
Here we are not getting any clue how to proceed so we use $\left( {{{\sec }^2}\theta - {{\tan }^2}\theta = 1} \right)$ to proceed further
$ = \dfrac{{\tan \theta + \sec \theta - \left( {{{\sec }^2}\theta - {{\tan }^2}\theta } \right)}}{{\tan \theta - \sec \theta + 1}}$
Now use property $\left( {{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)} \right)$
$ = \dfrac{{\tan \theta + \sec \theta - \left\{ {\left( {\sec \theta + \tan \theta } \right)\left( {\sec \theta - \tan \theta } \right)} \right\}}}{{\tan \theta - \sec \theta + 1}}$
Now taking $\left( {\sec \theta + \tan \theta } \right)$ common we get
$ = \dfrac{{\left( {\tan \theta + \sec \theta } \right)\left( {1 - \left( {\sec \theta - \tan \theta } \right)} \right)}}{{\tan \theta - \sec \theta + 1}}$
$ = \dfrac{{\left( {\tan \theta + \sec \theta } \right)\left( {1 - \sec \theta + \tan \theta } \right)}}{{\left( {1 - \sec \theta + \tan \theta } \right)}}$
On cancel out we get,
$ = \tan \theta + \sec \theta $
Now we can write $\left( {\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }},\sec \theta = \dfrac{1}{{\cos \theta }}} \right)$
$
= \dfrac{{\sin \theta }}{{\cos \theta }} + \dfrac{1}{{\cos \theta }} \\
= \dfrac{{\sin \theta + 1}}{{\cos \theta }} \\
$
=RHS
Hence Proved.
Note: Whenever we get this type of question the key concept of solving is either we have to start from RHS or LHS and proceed to get required results using standard results. To prove this type of question we have to use the presence of mind that what transformation should tend to require a result.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

What is the difference between biodegradable and nonbiodegradable class 11 biology CBSE

Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE

