Answer

Verified

456k+ views

Hint: Here we perform various operations on rows and columns of determinant to make it simple.

Taking the left-hand side of the questions and solving it further so that the left-hand side will become

equal to the right-hand side. So,

$ \Rightarrow $L. H. S =\[\left| {\begin{array}{*{20}{c}}

{{{\left( {b + c} \right)}^2}}&{{a^2}}&{{a^2}} \\

{{b^2}}&{{{(c + a)}^2}}&{{b^2}} \\

{{c^2}}&{{c^2}}&{{{(a + b)}^2}}

\end{array}} \right|\]

Now, to simplify the determinant we will do various operations so that the determinant becomes

easy and we can expand the determinant without any error. Expanding the determinant can be done

before simplification but, it will make the solution tedious and complicated. So, we will simplify the

determinant and then expand it. So, for simplification we will first subtract the column \[{C_3}\]from

the column ${C_1}$.

Applying ${C_1} \to {C_1} - {C_3}$

$ \Rightarrow $L. H. S = $\left| {\begin{array}{*{20}{c}}

{{{(b + c)}^2} - {a^2}}&{{a^2}}&{{a^2}} \\

{{b^2} - {b^2}}&{{{(c + a)}^2}}&{{b^2}} \\

{{c^2} - {{(a + b)}^2}}&{{c^2}}&{{{(a + b)}^2}}

\end{array}} \right|$

Also applying ${C_2} \to {C_2} - {C_3}$

$ \Rightarrow $L. H. S = $\left| {\begin{array}{*{20}{c}}

{{{(b + c)}^2} - {a^2}}&{{a^2} - {a^2}}&{{a^2}} \\

{{b^2} - {b^2}}&{{{(c + a)}^2} - {b^2}}&{{b^2}} \\

{{c^2} - {{(a + b)}^2}}&{{c^2} - {{(a + b)}^2}}&{{{(a + b)}^2}}

\end{array}} \right|$ ……………... (1)

Taking \[(a + b + c)\] common from column ${C_1}$and column \[{C_2}\]

$ \Rightarrow $L. H. S = ${(a + b + c)^2}\left| {\begin{array}{*{20}{c}}

{b + c - a}&0&{{a^2}} \\

0&{c + a - b}&{{b^2}} \\

{c - (a + b)}&{c - (a + b)}&{{{(a + b)}^2}}

\end{array}} \right|$

Also, applying ${R_3} \to {R_3} - {R_1} - {R_2}$

$ \Rightarrow $L. H. S = \[{(a + b + c)^2}\left| {\begin{array}{*{20}{c}}

{b + c - a}&0&{{a^2}} \\

0&{c + a - b}&{{b^2}} \\

{ - 2b}&{ - 2a}&{2ab}

\end{array}} \right|\]

Now, multiply and divide column ${C_1}$ by $a$ and column \[{C_2}\] by $b$.

$ \Rightarrow $L. H. S = \[\dfrac{{{{(a + b + c)}^2}}}{{ab}}\left| {\begin{array}{*{20}{c}}

{ab + ac - {a^2}}&0&{{a^2}} \\

0&{bc + ab - {b^2}}&{{b^2}} \\

{ - 2ab}&{ - 2ab}&{2ab}

\end{array}} \right|\]

Now, doing ${C_1} \to {C_1} + {C_3}$and ${C_2} \to {C_2} + {C_3}$

$ \Rightarrow $L. H. S = \[\dfrac{{{{(a + b + c)}^2}}}{{ab}}\left| {\begin{array}{*{20}{c}}

{ab + ac - {a^2} + {a^2}}&{{a^2}}&{{a^2}} \\

{{b^2}}&{bc + ab - {b^2} + {b^2}}&{{b^2}} \\

{ - 2ab + 2ab}&{ - 2ab + 2ab}&{2ab}

\end{array}} \right|\]

$ \Rightarrow $L. H. S = \[\dfrac{{{{(a + b + c)}^2}}}{{ab}}\left| {\begin{array}{*{20}{c}}

{ab + ac}&{{a^2}}&{{a^2}} \\

{{b^2}}&{bc + ab}&{{b^2}} \\

0&0&{2ab}

\end{array}} \right|\]

Now, our determinant has become simple. So, expanding determinant through row \[{R_3}\],

$ \Rightarrow $L. H. S = \[\dfrac{{{{(a + b + c)}^2}}}{{ab}}(2ab)\left| {\begin{array}{*{20}{c}}

{ab + ac}&{{a^2}} \\

{{b^2}}&{bc + ab}

\end{array}} \right|\]

$ \Rightarrow $L. H. S = \[\dfrac{{{{(a + b + c)}^2}}}{{ab}}(2ab)(ab)\{ (b + c)(c + a) - ab\} \]

$ \Rightarrow $L. H. S = \[\dfrac{{{{(a + b + c)}^2}}}{{ab}}(2ab)(ab)(bc + ab + {c^2} + ac - ab)\]

$ \Rightarrow $L. H. S = \[2abc{(a + b + c)^3}\]= R. H. S

Hence Proved.

Note: Such problems are easy but require a lot of concentration while doing. If there is lack of

concentration, then the problem may not be solved. Also, properties of determinant are important to

solve problems but without them the problem can be solved but the process is very complicated and

tedious as it includes many terms. Make the determinant as simple as possible to easily expand it.

Taking the left-hand side of the questions and solving it further so that the left-hand side will become

equal to the right-hand side. So,

$ \Rightarrow $L. H. S =\[\left| {\begin{array}{*{20}{c}}

{{{\left( {b + c} \right)}^2}}&{{a^2}}&{{a^2}} \\

{{b^2}}&{{{(c + a)}^2}}&{{b^2}} \\

{{c^2}}&{{c^2}}&{{{(a + b)}^2}}

\end{array}} \right|\]

Now, to simplify the determinant we will do various operations so that the determinant becomes

easy and we can expand the determinant without any error. Expanding the determinant can be done

before simplification but, it will make the solution tedious and complicated. So, we will simplify the

determinant and then expand it. So, for simplification we will first subtract the column \[{C_3}\]from

the column ${C_1}$.

Applying ${C_1} \to {C_1} - {C_3}$

$ \Rightarrow $L. H. S = $\left| {\begin{array}{*{20}{c}}

{{{(b + c)}^2} - {a^2}}&{{a^2}}&{{a^2}} \\

{{b^2} - {b^2}}&{{{(c + a)}^2}}&{{b^2}} \\

{{c^2} - {{(a + b)}^2}}&{{c^2}}&{{{(a + b)}^2}}

\end{array}} \right|$

Also applying ${C_2} \to {C_2} - {C_3}$

$ \Rightarrow $L. H. S = $\left| {\begin{array}{*{20}{c}}

{{{(b + c)}^2} - {a^2}}&{{a^2} - {a^2}}&{{a^2}} \\

{{b^2} - {b^2}}&{{{(c + a)}^2} - {b^2}}&{{b^2}} \\

{{c^2} - {{(a + b)}^2}}&{{c^2} - {{(a + b)}^2}}&{{{(a + b)}^2}}

\end{array}} \right|$ ……………... (1)

Taking \[(a + b + c)\] common from column ${C_1}$and column \[{C_2}\]

$ \Rightarrow $L. H. S = ${(a + b + c)^2}\left| {\begin{array}{*{20}{c}}

{b + c - a}&0&{{a^2}} \\

0&{c + a - b}&{{b^2}} \\

{c - (a + b)}&{c - (a + b)}&{{{(a + b)}^2}}

\end{array}} \right|$

Also, applying ${R_3} \to {R_3} - {R_1} - {R_2}$

$ \Rightarrow $L. H. S = \[{(a + b + c)^2}\left| {\begin{array}{*{20}{c}}

{b + c - a}&0&{{a^2}} \\

0&{c + a - b}&{{b^2}} \\

{ - 2b}&{ - 2a}&{2ab}

\end{array}} \right|\]

Now, multiply and divide column ${C_1}$ by $a$ and column \[{C_2}\] by $b$.

$ \Rightarrow $L. H. S = \[\dfrac{{{{(a + b + c)}^2}}}{{ab}}\left| {\begin{array}{*{20}{c}}

{ab + ac - {a^2}}&0&{{a^2}} \\

0&{bc + ab - {b^2}}&{{b^2}} \\

{ - 2ab}&{ - 2ab}&{2ab}

\end{array}} \right|\]

Now, doing ${C_1} \to {C_1} + {C_3}$and ${C_2} \to {C_2} + {C_3}$

$ \Rightarrow $L. H. S = \[\dfrac{{{{(a + b + c)}^2}}}{{ab}}\left| {\begin{array}{*{20}{c}}

{ab + ac - {a^2} + {a^2}}&{{a^2}}&{{a^2}} \\

{{b^2}}&{bc + ab - {b^2} + {b^2}}&{{b^2}} \\

{ - 2ab + 2ab}&{ - 2ab + 2ab}&{2ab}

\end{array}} \right|\]

$ \Rightarrow $L. H. S = \[\dfrac{{{{(a + b + c)}^2}}}{{ab}}\left| {\begin{array}{*{20}{c}}

{ab + ac}&{{a^2}}&{{a^2}} \\

{{b^2}}&{bc + ab}&{{b^2}} \\

0&0&{2ab}

\end{array}} \right|\]

Now, our determinant has become simple. So, expanding determinant through row \[{R_3}\],

$ \Rightarrow $L. H. S = \[\dfrac{{{{(a + b + c)}^2}}}{{ab}}(2ab)\left| {\begin{array}{*{20}{c}}

{ab + ac}&{{a^2}} \\

{{b^2}}&{bc + ab}

\end{array}} \right|\]

$ \Rightarrow $L. H. S = \[\dfrac{{{{(a + b + c)}^2}}}{{ab}}(2ab)(ab)\{ (b + c)(c + a) - ab\} \]

$ \Rightarrow $L. H. S = \[\dfrac{{{{(a + b + c)}^2}}}{{ab}}(2ab)(ab)(bc + ab + {c^2} + ac - ab)\]

$ \Rightarrow $L. H. S = \[2abc{(a + b + c)^3}\]= R. H. S

Hence Proved.

Note: Such problems are easy but require a lot of concentration while doing. If there is lack of

concentration, then the problem may not be solved. Also, properties of determinant are important to

solve problems but without them the problem can be solved but the process is very complicated and

tedious as it includes many terms. Make the determinant as simple as possible to easily expand it.

Recently Updated Pages

Which of the following is correct regarding the Indian class 10 social science CBSE

Who was the first sultan of delhi to issue regular class 10 social science CBSE

The Nagarjuna Sagar project was constructed on the class 10 social science CBSE

Which one of the following countries is the largest class 10 social science CBSE

What is Biosphere class 10 social science CBSE

Read the following statement and choose the best possible class 10 social science CBSE

Trending doubts

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Which are the Top 10 Largest Countries of the World?

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE

Why is the Earth called a unique planet class 6 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

One cusec is equal to how many liters class 8 maths CBSE