Answer
Verified
492k+ views
Hint: Here we perform various operations on rows and columns of determinant to make it simple.
Taking the left-hand side of the questions and solving it further so that the left-hand side will become
equal to the right-hand side. So,
$ \Rightarrow $L. H. S =\[\left| {\begin{array}{*{20}{c}}
{{{\left( {b + c} \right)}^2}}&{{a^2}}&{{a^2}} \\
{{b^2}}&{{{(c + a)}^2}}&{{b^2}} \\
{{c^2}}&{{c^2}}&{{{(a + b)}^2}}
\end{array}} \right|\]
Now, to simplify the determinant we will do various operations so that the determinant becomes
easy and we can expand the determinant without any error. Expanding the determinant can be done
before simplification but, it will make the solution tedious and complicated. So, we will simplify the
determinant and then expand it. So, for simplification we will first subtract the column \[{C_3}\]from
the column ${C_1}$.
Applying ${C_1} \to {C_1} - {C_3}$
$ \Rightarrow $L. H. S = $\left| {\begin{array}{*{20}{c}}
{{{(b + c)}^2} - {a^2}}&{{a^2}}&{{a^2}} \\
{{b^2} - {b^2}}&{{{(c + a)}^2}}&{{b^2}} \\
{{c^2} - {{(a + b)}^2}}&{{c^2}}&{{{(a + b)}^2}}
\end{array}} \right|$
Also applying ${C_2} \to {C_2} - {C_3}$
$ \Rightarrow $L. H. S = $\left| {\begin{array}{*{20}{c}}
{{{(b + c)}^2} - {a^2}}&{{a^2} - {a^2}}&{{a^2}} \\
{{b^2} - {b^2}}&{{{(c + a)}^2} - {b^2}}&{{b^2}} \\
{{c^2} - {{(a + b)}^2}}&{{c^2} - {{(a + b)}^2}}&{{{(a + b)}^2}}
\end{array}} \right|$ ……………... (1)
Taking \[(a + b + c)\] common from column ${C_1}$and column \[{C_2}\]
$ \Rightarrow $L. H. S = ${(a + b + c)^2}\left| {\begin{array}{*{20}{c}}
{b + c - a}&0&{{a^2}} \\
0&{c + a - b}&{{b^2}} \\
{c - (a + b)}&{c - (a + b)}&{{{(a + b)}^2}}
\end{array}} \right|$
Also, applying ${R_3} \to {R_3} - {R_1} - {R_2}$
$ \Rightarrow $L. H. S = \[{(a + b + c)^2}\left| {\begin{array}{*{20}{c}}
{b + c - a}&0&{{a^2}} \\
0&{c + a - b}&{{b^2}} \\
{ - 2b}&{ - 2a}&{2ab}
\end{array}} \right|\]
Now, multiply and divide column ${C_1}$ by $a$ and column \[{C_2}\] by $b$.
$ \Rightarrow $L. H. S = \[\dfrac{{{{(a + b + c)}^2}}}{{ab}}\left| {\begin{array}{*{20}{c}}
{ab + ac - {a^2}}&0&{{a^2}} \\
0&{bc + ab - {b^2}}&{{b^2}} \\
{ - 2ab}&{ - 2ab}&{2ab}
\end{array}} \right|\]
Now, doing ${C_1} \to {C_1} + {C_3}$and ${C_2} \to {C_2} + {C_3}$
$ \Rightarrow $L. H. S = \[\dfrac{{{{(a + b + c)}^2}}}{{ab}}\left| {\begin{array}{*{20}{c}}
{ab + ac - {a^2} + {a^2}}&{{a^2}}&{{a^2}} \\
{{b^2}}&{bc + ab - {b^2} + {b^2}}&{{b^2}} \\
{ - 2ab + 2ab}&{ - 2ab + 2ab}&{2ab}
\end{array}} \right|\]
$ \Rightarrow $L. H. S = \[\dfrac{{{{(a + b + c)}^2}}}{{ab}}\left| {\begin{array}{*{20}{c}}
{ab + ac}&{{a^2}}&{{a^2}} \\
{{b^2}}&{bc + ab}&{{b^2}} \\
0&0&{2ab}
\end{array}} \right|\]
Now, our determinant has become simple. So, expanding determinant through row \[{R_3}\],
$ \Rightarrow $L. H. S = \[\dfrac{{{{(a + b + c)}^2}}}{{ab}}(2ab)\left| {\begin{array}{*{20}{c}}
{ab + ac}&{{a^2}} \\
{{b^2}}&{bc + ab}
\end{array}} \right|\]
$ \Rightarrow $L. H. S = \[\dfrac{{{{(a + b + c)}^2}}}{{ab}}(2ab)(ab)\{ (b + c)(c + a) - ab\} \]
$ \Rightarrow $L. H. S = \[\dfrac{{{{(a + b + c)}^2}}}{{ab}}(2ab)(ab)(bc + ab + {c^2} + ac - ab)\]
$ \Rightarrow $L. H. S = \[2abc{(a + b + c)^3}\]= R. H. S
Hence Proved.
Note: Such problems are easy but require a lot of concentration while doing. If there is lack of
concentration, then the problem may not be solved. Also, properties of determinant are important to
solve problems but without them the problem can be solved but the process is very complicated and
tedious as it includes many terms. Make the determinant as simple as possible to easily expand it.
Taking the left-hand side of the questions and solving it further so that the left-hand side will become
equal to the right-hand side. So,
$ \Rightarrow $L. H. S =\[\left| {\begin{array}{*{20}{c}}
{{{\left( {b + c} \right)}^2}}&{{a^2}}&{{a^2}} \\
{{b^2}}&{{{(c + a)}^2}}&{{b^2}} \\
{{c^2}}&{{c^2}}&{{{(a + b)}^2}}
\end{array}} \right|\]
Now, to simplify the determinant we will do various operations so that the determinant becomes
easy and we can expand the determinant without any error. Expanding the determinant can be done
before simplification but, it will make the solution tedious and complicated. So, we will simplify the
determinant and then expand it. So, for simplification we will first subtract the column \[{C_3}\]from
the column ${C_1}$.
Applying ${C_1} \to {C_1} - {C_3}$
$ \Rightarrow $L. H. S = $\left| {\begin{array}{*{20}{c}}
{{{(b + c)}^2} - {a^2}}&{{a^2}}&{{a^2}} \\
{{b^2} - {b^2}}&{{{(c + a)}^2}}&{{b^2}} \\
{{c^2} - {{(a + b)}^2}}&{{c^2}}&{{{(a + b)}^2}}
\end{array}} \right|$
Also applying ${C_2} \to {C_2} - {C_3}$
$ \Rightarrow $L. H. S = $\left| {\begin{array}{*{20}{c}}
{{{(b + c)}^2} - {a^2}}&{{a^2} - {a^2}}&{{a^2}} \\
{{b^2} - {b^2}}&{{{(c + a)}^2} - {b^2}}&{{b^2}} \\
{{c^2} - {{(a + b)}^2}}&{{c^2} - {{(a + b)}^2}}&{{{(a + b)}^2}}
\end{array}} \right|$ ……………... (1)
Taking \[(a + b + c)\] common from column ${C_1}$and column \[{C_2}\]
$ \Rightarrow $L. H. S = ${(a + b + c)^2}\left| {\begin{array}{*{20}{c}}
{b + c - a}&0&{{a^2}} \\
0&{c + a - b}&{{b^2}} \\
{c - (a + b)}&{c - (a + b)}&{{{(a + b)}^2}}
\end{array}} \right|$
Also, applying ${R_3} \to {R_3} - {R_1} - {R_2}$
$ \Rightarrow $L. H. S = \[{(a + b + c)^2}\left| {\begin{array}{*{20}{c}}
{b + c - a}&0&{{a^2}} \\
0&{c + a - b}&{{b^2}} \\
{ - 2b}&{ - 2a}&{2ab}
\end{array}} \right|\]
Now, multiply and divide column ${C_1}$ by $a$ and column \[{C_2}\] by $b$.
$ \Rightarrow $L. H. S = \[\dfrac{{{{(a + b + c)}^2}}}{{ab}}\left| {\begin{array}{*{20}{c}}
{ab + ac - {a^2}}&0&{{a^2}} \\
0&{bc + ab - {b^2}}&{{b^2}} \\
{ - 2ab}&{ - 2ab}&{2ab}
\end{array}} \right|\]
Now, doing ${C_1} \to {C_1} + {C_3}$and ${C_2} \to {C_2} + {C_3}$
$ \Rightarrow $L. H. S = \[\dfrac{{{{(a + b + c)}^2}}}{{ab}}\left| {\begin{array}{*{20}{c}}
{ab + ac - {a^2} + {a^2}}&{{a^2}}&{{a^2}} \\
{{b^2}}&{bc + ab - {b^2} + {b^2}}&{{b^2}} \\
{ - 2ab + 2ab}&{ - 2ab + 2ab}&{2ab}
\end{array}} \right|\]
$ \Rightarrow $L. H. S = \[\dfrac{{{{(a + b + c)}^2}}}{{ab}}\left| {\begin{array}{*{20}{c}}
{ab + ac}&{{a^2}}&{{a^2}} \\
{{b^2}}&{bc + ab}&{{b^2}} \\
0&0&{2ab}
\end{array}} \right|\]
Now, our determinant has become simple. So, expanding determinant through row \[{R_3}\],
$ \Rightarrow $L. H. S = \[\dfrac{{{{(a + b + c)}^2}}}{{ab}}(2ab)\left| {\begin{array}{*{20}{c}}
{ab + ac}&{{a^2}} \\
{{b^2}}&{bc + ab}
\end{array}} \right|\]
$ \Rightarrow $L. H. S = \[\dfrac{{{{(a + b + c)}^2}}}{{ab}}(2ab)(ab)\{ (b + c)(c + a) - ab\} \]
$ \Rightarrow $L. H. S = \[\dfrac{{{{(a + b + c)}^2}}}{{ab}}(2ab)(ab)(bc + ab + {c^2} + ac - ab)\]
$ \Rightarrow $L. H. S = \[2abc{(a + b + c)^3}\]= R. H. S
Hence Proved.
Note: Such problems are easy but require a lot of concentration while doing. If there is lack of
concentration, then the problem may not be solved. Also, properties of determinant are important to
solve problems but without them the problem can be solved but the process is very complicated and
tedious as it includes many terms. Make the determinant as simple as possible to easily expand it.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE