
Prove the following
$\left| {\begin{array}{*{20}{c}}
{bc}&{bc' + b'c}&{b'c'} \\
{ca}&{ca' + c'a}&{c'a'} \\
{ab}&{ab' + a'b}&{a'b'}
\end{array}} \right| = \left( {bc' - b'c} \right)\left( {ca' - c'a} \right)\left( {ab' - a'b} \right)$
Answer
594.6k+ views
Hint: In this particular question use the concept of simplification first separate the determinant into two parts then form first and second determinant take abc and a’b’c’ common from first and third column respectively, so use these concepts to reach the solution of the question.
Complete step-by-step solution:
Given identity which we have to prove
$\left| {\begin{array}{*{20}{c}}
{bc}&{bc' + b'c}&{b'c'} \\
{ca}&{ca' + c'a}&{c'a'} \\
{ab}&{ab' + a'b}&{a'b'}
\end{array}} \right| = \left( {bc' - b'c} \right)\left( {ca' - c'a} \right)\left( {ab' - a'b} \right)$
Consider the LHS of the above identity we have,
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
{bc}&{bc' + b'c}&{b'c'} \\
{ca}&{ca' + c'a}&{c'a'} \\
{ab}&{ab' + a'b}&{a'b'}
\end{array}} \right|$
Now break this determinant into sum of two determinants we have,
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
{bc}&{bc'}&{b'c'} \\
{ca}&{ca'}&{c'a'} \\
{ab}&{ab'}&{a'b'}
\end{array}} \right| + \left| {\begin{array}{*{20}{c}}
{bc}&{b'c}&{b'c'} \\
{ca}&{c'a}&{c'a'} \\
{ab}&{a'b}&{a'b'}
\end{array}} \right|$
Now form first and second determinant take abc and a’b’c’ common from first and third column respectively we have,
\[ \Rightarrow \left( {abc} \right)\left( {a'b'c'} \right)\left| {\begin{array}{*{20}{c}}
{\dfrac{{bc}}{{abc}}}&{bc'}&{\dfrac{{b'c'}}{{a'b'c'}}} \\
{\dfrac{{ca}}{{abc}}}&{ca'}&{\dfrac{{c'a'}}{{a'b'c'}}} \\
{\dfrac{{ab}}{{abc}}}&{ab'}&{\dfrac{{a'b'}}{{a'b'c'}}}
\end{array}} \right| + \left( {abc} \right)\left( {a'b'c'} \right)\left| {\begin{array}{*{20}{c}}
{\dfrac{{bc}}{{abc}}}&{b'c}&{\dfrac{{b'c'}}{{a'b'c'}}} \\
{\dfrac{{ca}}{{abc}}}&{c'a}&{\dfrac{{c'a'}}{{a'b'c'}}} \\
{\dfrac{{ab}}{{abc}}}&{a'b}&{\dfrac{{a'b'}}{{a'b'c'}}}
\end{array}} \right|\]
Now simplify we have,
\[ \Rightarrow \left( {abc} \right)\left( {a'b'c'} \right)\left| {\begin{array}{*{20}{c}}
{\dfrac{1}{a}}&{bc'}&{\dfrac{1}{{a'}}} \\
{\dfrac{1}{b}}&{ca'}&{\dfrac{1}{{b'}}} \\
{\dfrac{1}{c}}&{ab'}&{\dfrac{1}{{c'}}}
\end{array}} \right| + \left( {abc} \right)\left( {a'b'c'} \right)\left| {\begin{array}{*{20}{c}}
{\dfrac{1}{a}}&{b'c}&{\dfrac{1}{{a'}}} \\
{\dfrac{1}{b}}&{c'a}&{\dfrac{1}{{b'}}} \\
{\dfrac{1}{c}}&{a'b}&{\dfrac{1}{{c'}}}
\end{array}} \right|\]
\[ \Rightarrow \left( {abc} \right)\left( {a'b'c'} \right)\left[ {\left| {\begin{array}{*{20}{c}}
{\dfrac{1}{a}}&{bc'}&{\dfrac{1}{{a'}}} \\
{\dfrac{1}{b}}&{ca'}&{\dfrac{1}{{b'}}} \\
{\dfrac{1}{c}}&{ab'}&{\dfrac{1}{{c'}}}
\end{array}} \right| + \left| {\begin{array}{*{20}{c}}
{\dfrac{1}{a}}&{b'c}&{\dfrac{1}{{a'}}} \\
{\dfrac{1}{b}}&{c'a}&{\dfrac{1}{{b'}}} \\
{\dfrac{1}{c}}&{a'b}&{\dfrac{1}{{c'}}}
\end{array}} \right|} \right]\]
Now expand the determinant we have,
\[ \Rightarrow \left( {abc} \right)\left( {a'b'c'} \right)\left[ {\dfrac{1}{a}\left| {\begin{array}{*{20}{c}}
{ca'}&{\dfrac{1}{{b'}}} \\
{ab'}&{\dfrac{1}{{c'}}}
\end{array}} \right| - bc'\left| {\begin{array}{*{20}{c}}
{\dfrac{1}{b}}&{\dfrac{1}{{b'}}} \\
{\dfrac{1}{c}}&{\dfrac{1}{{c'}}}
\end{array}} \right| + \dfrac{1}{{a'}}\left| {\begin{array}{*{20}{c}}
{\dfrac{1}{b}}&{ca'} \\
{\dfrac{1}{c}}&{ab'}
\end{array}} \right| + \dfrac{1}{a}\left| {\begin{array}{*{20}{c}}
{c'a}&{\dfrac{1}{{b'}}} \\
{a'b}&{\dfrac{1}{{c'}}}
\end{array}} \right| - b'c\left| {\begin{array}{*{20}{c}}
{\dfrac{1}{b}}&{\dfrac{1}{{b'}}} \\
{\dfrac{1}{c}}&{\dfrac{1}{{c'}}}
\end{array}} \right| + \dfrac{1}{{a'}}\left| {\begin{array}{*{20}{c}}
{\dfrac{1}{b}}&{c'a} \\
{\dfrac{1}{c}}&{a'b}
\end{array}} \right|} \right]\]
Now expand the all mini determinant we have,
\[ \Rightarrow \left( {abc} \right)\left( {a'b'c'} \right)\left[ {\dfrac{1}{a}\left( {\dfrac{{ca'}}{{c'}} - \dfrac{{ab'}}{{b'}}} \right) - bc'\left( {\dfrac{1}{{bc'}} - \dfrac{1}{{b'c}}} \right) + \dfrac{1}{{a'}}\left( {\dfrac{{ab'}}{b} - \dfrac{{ca'}}{c}} \right) + \dfrac{1}{a}\left( {\dfrac{{c'a}}{{c'}} - \dfrac{{a'b}}{{b'}}} \right) - b'c\left( {\dfrac{1}{{bc'}} - \dfrac{1}{{b'c}}} \right) + \dfrac{1}{{a'}}\left( {\dfrac{{a'b}}{b} - \dfrac{{c'a}}{c}} \right)} \right]\]Now simplify we have,
\[ \Rightarrow \left( {abc} \right)\left( {a'b'c'} \right)\left[ {\dfrac{{ca'}}{{ac'}} - 1 - 1 + \dfrac{{bc'}}{{b'c}} + \dfrac{{ab'}}{{a'b}} - 1 + 1 - \dfrac{{a'b}}{{ab'}} - \dfrac{{b'c}}{{bc'}} + 1 + 1 - \dfrac{{c'a}}{{a'c}}} \right]\]
\[ \Rightarrow \left( {abc} \right)\left( {a'b'c'} \right)\left[ {\dfrac{{ca'}}{{ac'}} + \dfrac{{bc'}}{{b'c}} + \dfrac{{ab'}}{{a'b}} - \dfrac{{a'b}}{{ab'}} - \dfrac{{b'c}}{{bc'}} - \dfrac{{c'a}}{{a'c}} + 3 - 3} \right]\]
\[ \Rightarrow \left( {abc} \right)\left( {a'b'c'} \right)\left[ {\left( {\dfrac{{ca'}}{{ac'}} - \dfrac{{c'a}}{{a'c}}} \right) + \left( {\dfrac{{bc'}}{{b'c}} - \dfrac{{b'c}}{{bc'}}} \right) + \left( {\dfrac{{ab'}}{{a'b}} - \dfrac{{a'b}}{{ab'}}} \right)} \right]\]
\[ \Rightarrow \left( {abc} \right)\left( {a'b'c'} \right)\left[ {\left( {\dfrac{{{{\left( {ca'} \right)}^2} - {{\left( {c'a} \right)}^2}}}{{aa'cc'}}} \right) + \left( {\dfrac{{{{\left( {bc'} \right)}^2} - {{\left( {b'c} \right)}^2}}}{{bb'cc'}}} \right) + \left( {\dfrac{{{{\left( {ab'} \right)}^2} - {{\left( {a'b} \right)}^2}}}{{aa'bb'}}} \right)} \right]\]
\[ \Rightarrow \left( {abc} \right)\left( {a'b'c'} \right)\left[ {\dfrac{{bb'{{\left( {ca'} \right)}^2} - bb'{{\left( {c'a} \right)}^2} + aa'{{\left( {bc'} \right)}^2} - aa'{{\left( {b'c} \right)}^2} + cc'{{\left( {ab'} \right)}^2} - cc'{{\left( {a'b} \right)}^2}}}{{aa'bb'cc'}}} \right]\]
\[ \Rightarrow bb'{\left( {ca'} \right)^2} - bb'{\left( {c'a} \right)^2} + aa'{\left( {bc'} \right)^2} - aa'{\left( {b'c} \right)^2} + cc'{\left( {ab'} \right)^2} - cc'{\left( {a'b} \right)^2}\]................. (1)
Now consider the RHS of the given equation we have,
$ \Rightarrow \left( {bc' - b'c} \right)\left( {ca' - c'a} \right)\left( {ab' - a'b} \right)$
Now multiply first two terms we have,
$ \Rightarrow \left( {bc'ca' - bc'c'a - b'cca' + b'cc'a} \right)\left( {ab' - a'b} \right)$
$ \Rightarrow \left( {bc'ca'ab' - bc'c'aab' - b'cca'ab' + b'cc'aab' - a'bbc'ca' + a'bbc'c'a + a'bb'cca' - a'bb'cc'a} \right)$
Now cancel out the same terms with positive and negative sign we have,
$ \Rightarrow \left( { - bc'c'aab' - b'cca'ab' + b'cc'aab' - a'bbc'ca' + a'bbc'c'a + a'bb'cca'} \right)$
\[ \Rightarrow bb'{\left( {ca'} \right)^2} - bb'{\left( {c'a} \right)^2} + aa'{\left( {bc'} \right)^2} - aa'{\left( {b'c} \right)^2} + cc'{\left( {ab'} \right)^2} - cc'{\left( {a'b} \right)^2}\]............... (2)
So as we see that equation (1) and (2) both are the same.
Therefore,
LHS = RHS
Hence proved.
Note: In such types of questions it is advised to simplify the LHS or the RHS according to their complexity of the functions. Sometimes proving LHS = RHS needs simplification on both sides of the equation. Remember to convert dissimilar functions to get to the final result, and check whether R.H.S is equal to L.H.S or not if yes then it is the required answer.
Complete step-by-step solution:
Given identity which we have to prove
$\left| {\begin{array}{*{20}{c}}
{bc}&{bc' + b'c}&{b'c'} \\
{ca}&{ca' + c'a}&{c'a'} \\
{ab}&{ab' + a'b}&{a'b'}
\end{array}} \right| = \left( {bc' - b'c} \right)\left( {ca' - c'a} \right)\left( {ab' - a'b} \right)$
Consider the LHS of the above identity we have,
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
{bc}&{bc' + b'c}&{b'c'} \\
{ca}&{ca' + c'a}&{c'a'} \\
{ab}&{ab' + a'b}&{a'b'}
\end{array}} \right|$
Now break this determinant into sum of two determinants we have,
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
{bc}&{bc'}&{b'c'} \\
{ca}&{ca'}&{c'a'} \\
{ab}&{ab'}&{a'b'}
\end{array}} \right| + \left| {\begin{array}{*{20}{c}}
{bc}&{b'c}&{b'c'} \\
{ca}&{c'a}&{c'a'} \\
{ab}&{a'b}&{a'b'}
\end{array}} \right|$
Now form first and second determinant take abc and a’b’c’ common from first and third column respectively we have,
\[ \Rightarrow \left( {abc} \right)\left( {a'b'c'} \right)\left| {\begin{array}{*{20}{c}}
{\dfrac{{bc}}{{abc}}}&{bc'}&{\dfrac{{b'c'}}{{a'b'c'}}} \\
{\dfrac{{ca}}{{abc}}}&{ca'}&{\dfrac{{c'a'}}{{a'b'c'}}} \\
{\dfrac{{ab}}{{abc}}}&{ab'}&{\dfrac{{a'b'}}{{a'b'c'}}}
\end{array}} \right| + \left( {abc} \right)\left( {a'b'c'} \right)\left| {\begin{array}{*{20}{c}}
{\dfrac{{bc}}{{abc}}}&{b'c}&{\dfrac{{b'c'}}{{a'b'c'}}} \\
{\dfrac{{ca}}{{abc}}}&{c'a}&{\dfrac{{c'a'}}{{a'b'c'}}} \\
{\dfrac{{ab}}{{abc}}}&{a'b}&{\dfrac{{a'b'}}{{a'b'c'}}}
\end{array}} \right|\]
Now simplify we have,
\[ \Rightarrow \left( {abc} \right)\left( {a'b'c'} \right)\left| {\begin{array}{*{20}{c}}
{\dfrac{1}{a}}&{bc'}&{\dfrac{1}{{a'}}} \\
{\dfrac{1}{b}}&{ca'}&{\dfrac{1}{{b'}}} \\
{\dfrac{1}{c}}&{ab'}&{\dfrac{1}{{c'}}}
\end{array}} \right| + \left( {abc} \right)\left( {a'b'c'} \right)\left| {\begin{array}{*{20}{c}}
{\dfrac{1}{a}}&{b'c}&{\dfrac{1}{{a'}}} \\
{\dfrac{1}{b}}&{c'a}&{\dfrac{1}{{b'}}} \\
{\dfrac{1}{c}}&{a'b}&{\dfrac{1}{{c'}}}
\end{array}} \right|\]
\[ \Rightarrow \left( {abc} \right)\left( {a'b'c'} \right)\left[ {\left| {\begin{array}{*{20}{c}}
{\dfrac{1}{a}}&{bc'}&{\dfrac{1}{{a'}}} \\
{\dfrac{1}{b}}&{ca'}&{\dfrac{1}{{b'}}} \\
{\dfrac{1}{c}}&{ab'}&{\dfrac{1}{{c'}}}
\end{array}} \right| + \left| {\begin{array}{*{20}{c}}
{\dfrac{1}{a}}&{b'c}&{\dfrac{1}{{a'}}} \\
{\dfrac{1}{b}}&{c'a}&{\dfrac{1}{{b'}}} \\
{\dfrac{1}{c}}&{a'b}&{\dfrac{1}{{c'}}}
\end{array}} \right|} \right]\]
Now expand the determinant we have,
\[ \Rightarrow \left( {abc} \right)\left( {a'b'c'} \right)\left[ {\dfrac{1}{a}\left| {\begin{array}{*{20}{c}}
{ca'}&{\dfrac{1}{{b'}}} \\
{ab'}&{\dfrac{1}{{c'}}}
\end{array}} \right| - bc'\left| {\begin{array}{*{20}{c}}
{\dfrac{1}{b}}&{\dfrac{1}{{b'}}} \\
{\dfrac{1}{c}}&{\dfrac{1}{{c'}}}
\end{array}} \right| + \dfrac{1}{{a'}}\left| {\begin{array}{*{20}{c}}
{\dfrac{1}{b}}&{ca'} \\
{\dfrac{1}{c}}&{ab'}
\end{array}} \right| + \dfrac{1}{a}\left| {\begin{array}{*{20}{c}}
{c'a}&{\dfrac{1}{{b'}}} \\
{a'b}&{\dfrac{1}{{c'}}}
\end{array}} \right| - b'c\left| {\begin{array}{*{20}{c}}
{\dfrac{1}{b}}&{\dfrac{1}{{b'}}} \\
{\dfrac{1}{c}}&{\dfrac{1}{{c'}}}
\end{array}} \right| + \dfrac{1}{{a'}}\left| {\begin{array}{*{20}{c}}
{\dfrac{1}{b}}&{c'a} \\
{\dfrac{1}{c}}&{a'b}
\end{array}} \right|} \right]\]
Now expand the all mini determinant we have,
\[ \Rightarrow \left( {abc} \right)\left( {a'b'c'} \right)\left[ {\dfrac{1}{a}\left( {\dfrac{{ca'}}{{c'}} - \dfrac{{ab'}}{{b'}}} \right) - bc'\left( {\dfrac{1}{{bc'}} - \dfrac{1}{{b'c}}} \right) + \dfrac{1}{{a'}}\left( {\dfrac{{ab'}}{b} - \dfrac{{ca'}}{c}} \right) + \dfrac{1}{a}\left( {\dfrac{{c'a}}{{c'}} - \dfrac{{a'b}}{{b'}}} \right) - b'c\left( {\dfrac{1}{{bc'}} - \dfrac{1}{{b'c}}} \right) + \dfrac{1}{{a'}}\left( {\dfrac{{a'b}}{b} - \dfrac{{c'a}}{c}} \right)} \right]\]Now simplify we have,
\[ \Rightarrow \left( {abc} \right)\left( {a'b'c'} \right)\left[ {\dfrac{{ca'}}{{ac'}} - 1 - 1 + \dfrac{{bc'}}{{b'c}} + \dfrac{{ab'}}{{a'b}} - 1 + 1 - \dfrac{{a'b}}{{ab'}} - \dfrac{{b'c}}{{bc'}} + 1 + 1 - \dfrac{{c'a}}{{a'c}}} \right]\]
\[ \Rightarrow \left( {abc} \right)\left( {a'b'c'} \right)\left[ {\dfrac{{ca'}}{{ac'}} + \dfrac{{bc'}}{{b'c}} + \dfrac{{ab'}}{{a'b}} - \dfrac{{a'b}}{{ab'}} - \dfrac{{b'c}}{{bc'}} - \dfrac{{c'a}}{{a'c}} + 3 - 3} \right]\]
\[ \Rightarrow \left( {abc} \right)\left( {a'b'c'} \right)\left[ {\left( {\dfrac{{ca'}}{{ac'}} - \dfrac{{c'a}}{{a'c}}} \right) + \left( {\dfrac{{bc'}}{{b'c}} - \dfrac{{b'c}}{{bc'}}} \right) + \left( {\dfrac{{ab'}}{{a'b}} - \dfrac{{a'b}}{{ab'}}} \right)} \right]\]
\[ \Rightarrow \left( {abc} \right)\left( {a'b'c'} \right)\left[ {\left( {\dfrac{{{{\left( {ca'} \right)}^2} - {{\left( {c'a} \right)}^2}}}{{aa'cc'}}} \right) + \left( {\dfrac{{{{\left( {bc'} \right)}^2} - {{\left( {b'c} \right)}^2}}}{{bb'cc'}}} \right) + \left( {\dfrac{{{{\left( {ab'} \right)}^2} - {{\left( {a'b} \right)}^2}}}{{aa'bb'}}} \right)} \right]\]
\[ \Rightarrow \left( {abc} \right)\left( {a'b'c'} \right)\left[ {\dfrac{{bb'{{\left( {ca'} \right)}^2} - bb'{{\left( {c'a} \right)}^2} + aa'{{\left( {bc'} \right)}^2} - aa'{{\left( {b'c} \right)}^2} + cc'{{\left( {ab'} \right)}^2} - cc'{{\left( {a'b} \right)}^2}}}{{aa'bb'cc'}}} \right]\]
\[ \Rightarrow bb'{\left( {ca'} \right)^2} - bb'{\left( {c'a} \right)^2} + aa'{\left( {bc'} \right)^2} - aa'{\left( {b'c} \right)^2} + cc'{\left( {ab'} \right)^2} - cc'{\left( {a'b} \right)^2}\]................. (1)
Now consider the RHS of the given equation we have,
$ \Rightarrow \left( {bc' - b'c} \right)\left( {ca' - c'a} \right)\left( {ab' - a'b} \right)$
Now multiply first two terms we have,
$ \Rightarrow \left( {bc'ca' - bc'c'a - b'cca' + b'cc'a} \right)\left( {ab' - a'b} \right)$
$ \Rightarrow \left( {bc'ca'ab' - bc'c'aab' - b'cca'ab' + b'cc'aab' - a'bbc'ca' + a'bbc'c'a + a'bb'cca' - a'bb'cc'a} \right)$
Now cancel out the same terms with positive and negative sign we have,
$ \Rightarrow \left( { - bc'c'aab' - b'cca'ab' + b'cc'aab' - a'bbc'ca' + a'bbc'c'a + a'bb'cca'} \right)$
\[ \Rightarrow bb'{\left( {ca'} \right)^2} - bb'{\left( {c'a} \right)^2} + aa'{\left( {bc'} \right)^2} - aa'{\left( {b'c} \right)^2} + cc'{\left( {ab'} \right)^2} - cc'{\left( {a'b} \right)^2}\]............... (2)
So as we see that equation (1) and (2) both are the same.
Therefore,
LHS = RHS
Hence proved.
Note: In such types of questions it is advised to simplify the LHS or the RHS according to their complexity of the functions. Sometimes proving LHS = RHS needs simplification on both sides of the equation. Remember to convert dissimilar functions to get to the final result, and check whether R.H.S is equal to L.H.S or not if yes then it is the required answer.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

