
Prove the following identity
$\sqrt{\dfrac{1-\cos x}{1+\cos x}}=\csc x-\cot x$
Answer
618.3k+ views
Hint: The given question is equivalent to proving \[\dfrac{1-\cos x}{1+\cos x}={{\left( \csc x-\cot x \right)}^{2}}\] . We will prove the latter. Multiply numerator and denominator of LHS by 1-cosx and use the identity $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$. Use Trigonometric identities $1-{{\cos }^{2}}x={{\sin }^{2}}x$ and $\csc x=\dfrac{1}{\sin x},\cot x=\dfrac{\cos x}{\sin x}$. Alternatively, simplify RHS by using the identity ${{\csc }^{2}}x-{{\cot }^{2}}x=1$
and then using $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$. Alternatively, you can simplify both LHS and RHS using half-angle formulae and find the relation between LHS and RHS. The half-angle formulae to be used here are $1-\cos x=2{{\sin }^{2}}\dfrac{x}{2}$, $1+\cos x=2{{\cos }^{2}}\dfrac{x}{2}$ and $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$
Complete step-by-step answer:
LHS $=\dfrac{1-\cos x}{1+\cos x}$
Multiplying numerator and denominator by 1-cosx, we get
LHS $=\dfrac{1-\cos x}{1+\cos x}\times \dfrac{1-\cos x}{1-\cos x}=\dfrac{{{\left( 1-\cos x \right)}^{2}}}{\left( 1+\cos x \right)\left( 1-\cos x \right)}$
We know that $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$
Put a = 1 and b = cosx we get\[\left( 1+\cos x \right)\left( 1-\cos x \right)=1-{{\cos }^{2}}x\]
We know that $1-{{\cos }^{2}}x={{\sin }^{2}}x$
Hence we have \[\left( 1+\cos x \right)\left( 1-\cos x \right)={{\sin }^{2}}x\]
Hence we have
LHS $=\dfrac{{{\left( 1-\cos x \right)}^{2}}}{{{\sin }^{2}}x}=\left( \dfrac{1-\cos x}{\sin x} \right)$
We know that $\dfrac{a+b}{c}=\dfrac{a}{c}+\dfrac{b}{c}$
Using the above identity, we get
LHS $={{\left( \dfrac{1}{\sin x}-\dfrac{\cos x}{\sin x} \right)}^{2}}$
We know $\csc x=\dfrac{1}{\sin x},\cot x=\dfrac{\cos x}{\sin x}$
Using the above identities, we get
LHS $={{\left( \csc x-\cot x \right)}^{2}}=$ RHS
Hence $\sqrt{\dfrac{1-\cos x}{1+\cos x}}=\csc x-\cot x$
Note: Alternate solution [1]
We know that
${{\csc }^{2}}x-{{\cot }^{2}}x=1$
Using $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$
$\begin{align}
& \Rightarrow \left( \csc x-\cot x \right)\left( \csc x+\cot x \right)=1 \\
& \Rightarrow \csc x-\cot x=\dfrac{1}{\csc x+\cot x} \\
\end{align}$
Multiplying both sides by cosec x - cot x, we get
${{\left( \csc x-\cot x \right)}^{2}}=\dfrac{\csc x-\cot x}{\csc x+\cot x}$
Hence we have
RHS $=\dfrac{\csc x-\cot x}{\csc x+\cot x}$
Multiplying the numerator and denominator by sinx we get
RHS $=\dfrac{\csc x\sin x-\cot x\sin x}{\csc x\sin x+\cot x\sin x}$
Using (cosecx) (sinx) = 1 and (cotx)(sinx) = cosx, we get
RHS $=\dfrac{1-\cos x}{1+\cos x}=$LHS
Hence we have LHS = RHS
Hence $\sqrt{\dfrac{1-\cos x}{1+\cos x}}=\csc x-\cot x$
Alternate Solution [2]
We know that $1-\cos x=2{{\sin }^{2}}\dfrac{x}{2}$ and $1+\cos x=2{{\cos }^{2}}\dfrac{x}{2}$
Hence we have
\[\dfrac{1-\cos x}{1+\cos x}={{\tan }^{2}}\dfrac{x}{2}\]
Using $\csc x=\dfrac{1}{\sin x},\cot x=\dfrac{\cos x}{\sin x}$ in the expression cosecx -cotx we get
$\csc x-\cot x=\dfrac{1-\cos x}{\sin x}$
We know that $1-\cos x=2{{\sin }^{2}}\dfrac{x}{2}$ and $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$
Using the above identities, we get
$\csc x-\cot x=\dfrac{2{{\sin }^{2}}\dfrac{x}{2}}{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}=\tan \dfrac{x}{2}$
Hence we have
\[\dfrac{1-\cos x}{1+\cos x}={{\tan }^{2}}\dfrac{x}{2}={{\left( \tan \dfrac{x}{2} \right)}^{2}}={{\left( \csc x-\cot x \right)}^{2}}\]
Hence we have LHS = RHS
Hence $\sqrt{\dfrac{1-\cos x}{1+\cos x}}=\csc x-\cot x$
Hence proved
and then using $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$. Alternatively, you can simplify both LHS and RHS using half-angle formulae and find the relation between LHS and RHS. The half-angle formulae to be used here are $1-\cos x=2{{\sin }^{2}}\dfrac{x}{2}$, $1+\cos x=2{{\cos }^{2}}\dfrac{x}{2}$ and $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$
Complete step-by-step answer:
LHS $=\dfrac{1-\cos x}{1+\cos x}$
Multiplying numerator and denominator by 1-cosx, we get
LHS $=\dfrac{1-\cos x}{1+\cos x}\times \dfrac{1-\cos x}{1-\cos x}=\dfrac{{{\left( 1-\cos x \right)}^{2}}}{\left( 1+\cos x \right)\left( 1-\cos x \right)}$
We know that $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$
Put a = 1 and b = cosx we get\[\left( 1+\cos x \right)\left( 1-\cos x \right)=1-{{\cos }^{2}}x\]
We know that $1-{{\cos }^{2}}x={{\sin }^{2}}x$
Hence we have \[\left( 1+\cos x \right)\left( 1-\cos x \right)={{\sin }^{2}}x\]
Hence we have
LHS $=\dfrac{{{\left( 1-\cos x \right)}^{2}}}{{{\sin }^{2}}x}=\left( \dfrac{1-\cos x}{\sin x} \right)$
We know that $\dfrac{a+b}{c}=\dfrac{a}{c}+\dfrac{b}{c}$
Using the above identity, we get
LHS $={{\left( \dfrac{1}{\sin x}-\dfrac{\cos x}{\sin x} \right)}^{2}}$
We know $\csc x=\dfrac{1}{\sin x},\cot x=\dfrac{\cos x}{\sin x}$
Using the above identities, we get
LHS $={{\left( \csc x-\cot x \right)}^{2}}=$ RHS
Hence $\sqrt{\dfrac{1-\cos x}{1+\cos x}}=\csc x-\cot x$
Note: Alternate solution [1]
We know that
${{\csc }^{2}}x-{{\cot }^{2}}x=1$
Using $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$
$\begin{align}
& \Rightarrow \left( \csc x-\cot x \right)\left( \csc x+\cot x \right)=1 \\
& \Rightarrow \csc x-\cot x=\dfrac{1}{\csc x+\cot x} \\
\end{align}$
Multiplying both sides by cosec x - cot x, we get
${{\left( \csc x-\cot x \right)}^{2}}=\dfrac{\csc x-\cot x}{\csc x+\cot x}$
Hence we have
RHS $=\dfrac{\csc x-\cot x}{\csc x+\cot x}$
Multiplying the numerator and denominator by sinx we get
RHS $=\dfrac{\csc x\sin x-\cot x\sin x}{\csc x\sin x+\cot x\sin x}$
Using (cosecx) (sinx) = 1 and (cotx)(sinx) = cosx, we get
RHS $=\dfrac{1-\cos x}{1+\cos x}=$LHS
Hence we have LHS = RHS
Hence $\sqrt{\dfrac{1-\cos x}{1+\cos x}}=\csc x-\cot x$
Alternate Solution [2]
We know that $1-\cos x=2{{\sin }^{2}}\dfrac{x}{2}$ and $1+\cos x=2{{\cos }^{2}}\dfrac{x}{2}$
Hence we have
\[\dfrac{1-\cos x}{1+\cos x}={{\tan }^{2}}\dfrac{x}{2}\]
Using $\csc x=\dfrac{1}{\sin x},\cot x=\dfrac{\cos x}{\sin x}$ in the expression cosecx -cotx we get
$\csc x-\cot x=\dfrac{1-\cos x}{\sin x}$
We know that $1-\cos x=2{{\sin }^{2}}\dfrac{x}{2}$ and $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$
Using the above identities, we get
$\csc x-\cot x=\dfrac{2{{\sin }^{2}}\dfrac{x}{2}}{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}=\tan \dfrac{x}{2}$
Hence we have
\[\dfrac{1-\cos x}{1+\cos x}={{\tan }^{2}}\dfrac{x}{2}={{\left( \tan \dfrac{x}{2} \right)}^{2}}={{\left( \csc x-\cot x \right)}^{2}}\]
Hence we have LHS = RHS
Hence $\sqrt{\dfrac{1-\cos x}{1+\cos x}}=\csc x-\cot x$
Hence proved
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

