
Prove the following identity: $\left| {\begin{array}{*{20}{c}}
a&b&c \\
{a - b}&{b - c}&{c - a} \\
{b + c}&{c + a}&{a + b}
\end{array}} \right| = {a^3} + {b^3} + {c^3} - 3abc$
Answer
577.8k+ views
Hint: To prove the given identity, solve the determinant given in the left-side and then compare it to right-side. Use the definition of determinant to expand the left-side. Use parentheses and square brackets to avoid complications and solve by opening parenthesis step by step. Pair the same terms with opposite signs and equate them to zero.
Complete step-by-step answer:
In the given problem, we have to prove the equality between two expressions. On left-side, we have a determinant of three-cross-three matrix, i.e. matrix with three rows and three columns. And on right-side, we have a cubic expression in terms of $a,b{\text{ and }}c$ .
Before starting with the solution, we should understand the concept of determinants and how to evaluate them. In linear algebra, the determinant is a scalar value that can be computed from the elements of a square matrix and encodes certain properties of the linear transformation described by the matrix. The determinant of a matrix A is denoted $\det \left( A \right)$ , $\det A$ , or \[\left| A \right|\] . Geometrically, it can be viewed as the volume scaling factor of the linear transformation described by the matrix.
In the case of a 2 × 2 matrix, the determinant may be defined as:
$\left| A \right| = \left| {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right| = ad - bc$
Similarly, for a 3 × 3 matrix A, its determinant is:
$\left| A \right| = \left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right| = a\left| {\begin{array}{*{20}{c}}
e&f \\
h&i
\end{array}} \right| - b\left| {\begin{array}{*{20}{c}}
d&f \\
g&i
\end{array}} \right| + c\left| {\begin{array}{*{20}{c}}
d&e \\
g&h
\end{array}} \right| = aei + bfg + cdh - ceg - bdi - afh$
And for our case, we have a $3 \times 3$ determinant as: $\left| {\begin{array}{*{20}{c}}
a&b&c \\
{a - b}&{b - c}&{c - a} \\
{b + c}&{c + a}&{a + b}
\end{array}} \right|$
So this determinant can also be evaluated similarly by using the above definition:
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
a&b&c \\
{a - b}&{b - c}&{c - a} \\
{b + c}&{c + a}&{a + b}
\end{array}} \right| = a\left| {\begin{array}{*{20}{c}}
{b - c}&{c - a} \\
{c + a}&{a + b}
\end{array}} \right| - b\left| {\begin{array}{*{20}{c}}
{a - b}&{c - a} \\
{b + c}&{a + b}
\end{array}} \right| + c\left| {\begin{array}{*{20}{c}}
{a - b}&{b - c} \\
{b + c}&{c + a}
\end{array}} \right|$
Now, this can be further simplified using the definition of $2 \times 2$ matrix:
$ \Rightarrow a\left| {\begin{array}{*{20}{c}}
{b - c}&{c - a} \\
{c + a}&{a + b}
\end{array}} \right| - b\left| {\begin{array}{*{20}{c}}
{a - b}&{c - a} \\
{b + c}&{a + b}
\end{array}} \right| + c\left| {\begin{array}{*{20}{c}}
{a - b}&{b - c} \\
{b + c}&{c + a}
\end{array}} \right| = $
$ = a\left[ {\left( {b - c} \right)\left( {a + b} \right) - \left( {c + a} \right)\left( {c - a} \right)} \right] - b\left[ {\left( {a - b} \right)\left( {a + b} \right) - \left( {c - a} \right)\left( {b + c} \right)} \right] + c\left[ {\left( {a - b} \right)\left( {c + a} \right) - \left( {b - c} \right)\left( {b + c} \right)} \right]$
Now let’s multiply the terms in parenthesis while being careful with the brackets.
$ = a\left[ {\left( {ba + {b^2} - ca - cb} \right) - \left( {{c^2} - {a^2}} \right)} \right] - b\left[ {\left( {{a^2} - {b^2}} \right) - \left( {cb + {c^2} - ab - ac} \right)} \right] + c\left[ {\left( {ac + {a^2} - bc - ba} \right) - \left( {{b^2} - {c^2}} \right)} \right]$
We can now open these parentheses and make quadratic expressions inside square brackets
$ = a\left[ {{a^2} + {b^2} - {c^2} + ba - ca - cb} \right] - b\left[ {{a^2} - {b^2} - {c^2} - cb + ab + ac} \right] + c\left[ {{a^2} - {b^2} + {c^2} + ac - bc - ba} \right]$
On opening the square brackets, we get:
\[ \Rightarrow {a^3} + a{b^2} - a{c^2} + b{a^2} - c{a^2} - abc - {a^2}b + {b^3} + {c^2}b + c{b^2} - a{b^2} - abc + {a^2}c - {b^2}c + {c^3} + a{c^2} - b{c^2} - abc\]
We can now pair up the same terms with opposite signs and equate them to zero
\[ \Rightarrow {a^3} + {b^3} + {c^3} - abc - abc - abc + \]
\[ + \left( {a{b^2} - a{b^2}} \right) + \left( {a{c^2} - a{c^2}} \right) + \left( {{a^2}b - {a^2}b} \right) + \left( {c{a^2} - c{a^2}} \right) + \left( {{c^2}b - b{c^2}} \right) + \left( {c{b^2} - {b^2}c} \right)\]
Clearly, each of these three pair is equal to zero; therefore we get the value for determinant:
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
a&b&c \\
{a - b}&{b - c}&{c - a} \\
{b + c}&{c + a}&{a + b}
\end{array}} \right| = {a^3} + {b^3} + {c^3} - 3abc$
This is equal to the RHS of the given equation in the problem.
Hence, we proved that: $\left| {\begin{array}{*{20}{c}}
a&b&c \\
{a - b}&{b - c}&{c - a} \\
{b + c}&{c + a}&{a + b}
\end{array}} \right| = {a^3} + {b^3} + {c^3} - 3abc$
Note: The determinant is used for solving linear equations. The determinant can be viewed as a function whose input is a square matrix and whose output is a number.
The use of parentheses and square brackets was the crucial part of the solution. Go step by step and be careful while opening and evaluating brackets. Remember to use $\left( {a + b} \right)\left( {c + d} \right) = ac + ad + bc + bd$ and identity $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$ while simplifying the value of the determinant.
Complete step-by-step answer:
In the given problem, we have to prove the equality between two expressions. On left-side, we have a determinant of three-cross-three matrix, i.e. matrix with three rows and three columns. And on right-side, we have a cubic expression in terms of $a,b{\text{ and }}c$ .
Before starting with the solution, we should understand the concept of determinants and how to evaluate them. In linear algebra, the determinant is a scalar value that can be computed from the elements of a square matrix and encodes certain properties of the linear transformation described by the matrix. The determinant of a matrix A is denoted $\det \left( A \right)$ , $\det A$ , or \[\left| A \right|\] . Geometrically, it can be viewed as the volume scaling factor of the linear transformation described by the matrix.
In the case of a 2 × 2 matrix, the determinant may be defined as:
$\left| A \right| = \left| {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right| = ad - bc$
Similarly, for a 3 × 3 matrix A, its determinant is:
$\left| A \right| = \left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right| = a\left| {\begin{array}{*{20}{c}}
e&f \\
h&i
\end{array}} \right| - b\left| {\begin{array}{*{20}{c}}
d&f \\
g&i
\end{array}} \right| + c\left| {\begin{array}{*{20}{c}}
d&e \\
g&h
\end{array}} \right| = aei + bfg + cdh - ceg - bdi - afh$
And for our case, we have a $3 \times 3$ determinant as: $\left| {\begin{array}{*{20}{c}}
a&b&c \\
{a - b}&{b - c}&{c - a} \\
{b + c}&{c + a}&{a + b}
\end{array}} \right|$
So this determinant can also be evaluated similarly by using the above definition:
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
a&b&c \\
{a - b}&{b - c}&{c - a} \\
{b + c}&{c + a}&{a + b}
\end{array}} \right| = a\left| {\begin{array}{*{20}{c}}
{b - c}&{c - a} \\
{c + a}&{a + b}
\end{array}} \right| - b\left| {\begin{array}{*{20}{c}}
{a - b}&{c - a} \\
{b + c}&{a + b}
\end{array}} \right| + c\left| {\begin{array}{*{20}{c}}
{a - b}&{b - c} \\
{b + c}&{c + a}
\end{array}} \right|$
Now, this can be further simplified using the definition of $2 \times 2$ matrix:
$ \Rightarrow a\left| {\begin{array}{*{20}{c}}
{b - c}&{c - a} \\
{c + a}&{a + b}
\end{array}} \right| - b\left| {\begin{array}{*{20}{c}}
{a - b}&{c - a} \\
{b + c}&{a + b}
\end{array}} \right| + c\left| {\begin{array}{*{20}{c}}
{a - b}&{b - c} \\
{b + c}&{c + a}
\end{array}} \right| = $
$ = a\left[ {\left( {b - c} \right)\left( {a + b} \right) - \left( {c + a} \right)\left( {c - a} \right)} \right] - b\left[ {\left( {a - b} \right)\left( {a + b} \right) - \left( {c - a} \right)\left( {b + c} \right)} \right] + c\left[ {\left( {a - b} \right)\left( {c + a} \right) - \left( {b - c} \right)\left( {b + c} \right)} \right]$
Now let’s multiply the terms in parenthesis while being careful with the brackets.
$ = a\left[ {\left( {ba + {b^2} - ca - cb} \right) - \left( {{c^2} - {a^2}} \right)} \right] - b\left[ {\left( {{a^2} - {b^2}} \right) - \left( {cb + {c^2} - ab - ac} \right)} \right] + c\left[ {\left( {ac + {a^2} - bc - ba} \right) - \left( {{b^2} - {c^2}} \right)} \right]$
We can now open these parentheses and make quadratic expressions inside square brackets
$ = a\left[ {{a^2} + {b^2} - {c^2} + ba - ca - cb} \right] - b\left[ {{a^2} - {b^2} - {c^2} - cb + ab + ac} \right] + c\left[ {{a^2} - {b^2} + {c^2} + ac - bc - ba} \right]$
On opening the square brackets, we get:
\[ \Rightarrow {a^3} + a{b^2} - a{c^2} + b{a^2} - c{a^2} - abc - {a^2}b + {b^3} + {c^2}b + c{b^2} - a{b^2} - abc + {a^2}c - {b^2}c + {c^3} + a{c^2} - b{c^2} - abc\]
We can now pair up the same terms with opposite signs and equate them to zero
\[ \Rightarrow {a^3} + {b^3} + {c^3} - abc - abc - abc + \]
\[ + \left( {a{b^2} - a{b^2}} \right) + \left( {a{c^2} - a{c^2}} \right) + \left( {{a^2}b - {a^2}b} \right) + \left( {c{a^2} - c{a^2}} \right) + \left( {{c^2}b - b{c^2}} \right) + \left( {c{b^2} - {b^2}c} \right)\]
Clearly, each of these three pair is equal to zero; therefore we get the value for determinant:
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
a&b&c \\
{a - b}&{b - c}&{c - a} \\
{b + c}&{c + a}&{a + b}
\end{array}} \right| = {a^3} + {b^3} + {c^3} - 3abc$
This is equal to the RHS of the given equation in the problem.
Hence, we proved that: $\left| {\begin{array}{*{20}{c}}
a&b&c \\
{a - b}&{b - c}&{c - a} \\
{b + c}&{c + a}&{a + b}
\end{array}} \right| = {a^3} + {b^3} + {c^3} - 3abc$
Note: The determinant is used for solving linear equations. The determinant can be viewed as a function whose input is a square matrix and whose output is a number.
The use of parentheses and square brackets was the crucial part of the solution. Go step by step and be careful while opening and evaluating brackets. Remember to use $\left( {a + b} \right)\left( {c + d} \right) = ac + ad + bc + bd$ and identity $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$ while simplifying the value of the determinant.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

