
Prove the following expression ${{\tan }^{-1}}\left( \sqrt{x} \right)=\dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{1-x}{1+x} \right)\,,\,x\in \left[ 0,1 \right]$.
Answer
609.6k+ views
Hint: We will use the substitution $x={{\tan }^{2}}\left( \theta \right)$ here to solve the question further. Using this substitution we will convert the right side of the expression ${{\tan }^{-1}}\left( \sqrt{x} \right)=\dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{1-x}{1+x} \right)\,,\,x\in \left[ 0,1 \right]$ in terms of inverse tan.
Complete step-by-step answer:
Now we will first consider the expression ${{\tan }^{-1}}\left( \sqrt{x} \right)=\dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{1-x}{1+x} \right)\,,\,x\in \left[ 0,1 \right]....(i)$.
We will substitute $x={{\tan }^{2}}\left( \theta \right)$ here to the right side of the equation (i). Therefore, we have
$\dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{1-x}{1+x} \right)\,=\dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{1-{{\tan }^{2}}\left( \theta \right)}{1+{{\tan }^{2}}\left( \theta \right)} \right)\,$. As we know that $\tan \left( p \right)=\dfrac{\sin \left( p \right)}{\cos \left( p \right)}$. Therefore we will have
$\begin{align}
& \dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{1-x}{1+x} \right)\,=\dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{1-\dfrac{{{\sin }^{2}}\left( \theta \right)}{{{\cos }^{2}}\left( \theta \right)}}{1+\dfrac{{{\sin }^{2}}\left( \theta \right)}{{{\cos }^{2}}\left( \theta \right)}} \right)\, \\
& \Rightarrow \dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{1-x}{1+x} \right)\,=\dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{\dfrac{{{\cos }^{2}}\left( \theta \right)-{{\sin }^{2}}\left( \theta \right)}{{{\cos }^{2}}\left( \theta \right)}}{\dfrac{{{\cos }^{2}}\left( \theta \right)+{{\sin }^{2}}\left( \theta \right)}{{{\cos }^{2}}\left( \theta \right)}} \right)\, \\
\end{align}$
After cancelling the term ${{\cos }^{2}}\left( \theta \right)$ we will have $\dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{1-x}{1+x} \right)\,=\dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{{{\cos }^{2}}\left( \theta \right)-{{\sin }^{2}}\left( \theta \right)}{{{\cos }^{2}}\left( \theta \right)+{{\sin }^{2}}\left( \theta \right)} \right)$. As we know that ${{\cos }^{2}}\left( \theta \right)+{{\sin }^{2}}\left( \theta \right)=1$. Therefore, we will get
$\begin{align}
& \dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{1-x}{1+x} \right)\,=\dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{{{\cos }^{2}}\left( \theta \right)-{{\sin }^{2}}\left( \theta \right)}{1} \right) \\
& \Rightarrow \dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{1-x}{1+x} \right)\,=\dfrac{1}{2}{{\cos }^{-1}}\left( {{\cos }^{2}}\left( \theta \right)-{{\sin }^{2}}\left( \theta \right) \right) \\
\end{align}$
Now we will apply the formula given by $\cos \left( 2\theta \right)={{\cos }^{2}}\left( \theta \right)-{{\sin }^{2}}\left( \theta \right)$ in the above expression thus, we will get
$\dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{1-x}{1+x} \right)\,=\dfrac{1}{2}{{\cos }^{-1}}\left( \cos \left( 2\theta \right) \right)$
As we know that ${{\cos }^{-1}}\left( \cos \left( x \right) \right)=x$ therefore, we have
$\begin{align}
& \dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{1-x}{1+x} \right)\,=\dfrac{1}{2}\times 2\theta \\
& \Rightarrow \dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{1-x}{1+x} \right)\,=\theta ...(ii) \\
\end{align}$
Since, we have that $x={{\tan }^{2}}\left( \theta \right)$. By taking root to both the sides of the term $x={{\tan }^{2}}\left( \theta \right)$ we will get $\sqrt{x}=\tan \left( \theta \right)$. Now we will take the tan term to the left side of the expression we will get ${{\tan }^{-1}}\left( \sqrt{x} \right)=\theta $. Now we will substitute the value of $\theta $ in equation (ii). Therefore, we have
$\dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{1-x}{1+x} \right)\,={{\tan }^{-1}}\left( \sqrt{x} \right)$ which is our required expression.
Hence, the expression ${{\tan }^{-1}}\left( \sqrt{x} \right)=\dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{1-x}{1+x} \right)\,,\,x\in \left[ 0,1 \right]$ is proved.
Note: Alternatively we could have used the method in which we can convert ${{\cos }^{-1}}$ term into ${{\tan }^{-1}}$. This can be done by the formula ${{\cos }^{-1}}\left( x \right)={{\tan }^{-1}}\left( \dfrac{\sqrt{1-{{x}^{2}}}}{x} \right)$. We can use this formula here since we have the condition $x\in \left[ 0,1 \right]$ which is the required condition for the formula.
Complete step-by-step answer:
Now we will first consider the expression ${{\tan }^{-1}}\left( \sqrt{x} \right)=\dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{1-x}{1+x} \right)\,,\,x\in \left[ 0,1 \right]....(i)$.
We will substitute $x={{\tan }^{2}}\left( \theta \right)$ here to the right side of the equation (i). Therefore, we have
$\dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{1-x}{1+x} \right)\,=\dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{1-{{\tan }^{2}}\left( \theta \right)}{1+{{\tan }^{2}}\left( \theta \right)} \right)\,$. As we know that $\tan \left( p \right)=\dfrac{\sin \left( p \right)}{\cos \left( p \right)}$. Therefore we will have
$\begin{align}
& \dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{1-x}{1+x} \right)\,=\dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{1-\dfrac{{{\sin }^{2}}\left( \theta \right)}{{{\cos }^{2}}\left( \theta \right)}}{1+\dfrac{{{\sin }^{2}}\left( \theta \right)}{{{\cos }^{2}}\left( \theta \right)}} \right)\, \\
& \Rightarrow \dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{1-x}{1+x} \right)\,=\dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{\dfrac{{{\cos }^{2}}\left( \theta \right)-{{\sin }^{2}}\left( \theta \right)}{{{\cos }^{2}}\left( \theta \right)}}{\dfrac{{{\cos }^{2}}\left( \theta \right)+{{\sin }^{2}}\left( \theta \right)}{{{\cos }^{2}}\left( \theta \right)}} \right)\, \\
\end{align}$
After cancelling the term ${{\cos }^{2}}\left( \theta \right)$ we will have $\dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{1-x}{1+x} \right)\,=\dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{{{\cos }^{2}}\left( \theta \right)-{{\sin }^{2}}\left( \theta \right)}{{{\cos }^{2}}\left( \theta \right)+{{\sin }^{2}}\left( \theta \right)} \right)$. As we know that ${{\cos }^{2}}\left( \theta \right)+{{\sin }^{2}}\left( \theta \right)=1$. Therefore, we will get
$\begin{align}
& \dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{1-x}{1+x} \right)\,=\dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{{{\cos }^{2}}\left( \theta \right)-{{\sin }^{2}}\left( \theta \right)}{1} \right) \\
& \Rightarrow \dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{1-x}{1+x} \right)\,=\dfrac{1}{2}{{\cos }^{-1}}\left( {{\cos }^{2}}\left( \theta \right)-{{\sin }^{2}}\left( \theta \right) \right) \\
\end{align}$
Now we will apply the formula given by $\cos \left( 2\theta \right)={{\cos }^{2}}\left( \theta \right)-{{\sin }^{2}}\left( \theta \right)$ in the above expression thus, we will get
$\dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{1-x}{1+x} \right)\,=\dfrac{1}{2}{{\cos }^{-1}}\left( \cos \left( 2\theta \right) \right)$
As we know that ${{\cos }^{-1}}\left( \cos \left( x \right) \right)=x$ therefore, we have
$\begin{align}
& \dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{1-x}{1+x} \right)\,=\dfrac{1}{2}\times 2\theta \\
& \Rightarrow \dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{1-x}{1+x} \right)\,=\theta ...(ii) \\
\end{align}$
Since, we have that $x={{\tan }^{2}}\left( \theta \right)$. By taking root to both the sides of the term $x={{\tan }^{2}}\left( \theta \right)$ we will get $\sqrt{x}=\tan \left( \theta \right)$. Now we will take the tan term to the left side of the expression we will get ${{\tan }^{-1}}\left( \sqrt{x} \right)=\theta $. Now we will substitute the value of $\theta $ in equation (ii). Therefore, we have
$\dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{1-x}{1+x} \right)\,={{\tan }^{-1}}\left( \sqrt{x} \right)$ which is our required expression.
Hence, the expression ${{\tan }^{-1}}\left( \sqrt{x} \right)=\dfrac{1}{2}{{\cos }^{-1}}\left( \dfrac{1-x}{1+x} \right)\,,\,x\in \left[ 0,1 \right]$ is proved.
Note: Alternatively we could have used the method in which we can convert ${{\cos }^{-1}}$ term into ${{\tan }^{-1}}$. This can be done by the formula ${{\cos }^{-1}}\left( x \right)={{\tan }^{-1}}\left( \dfrac{\sqrt{1-{{x}^{2}}}}{x} \right)$. We can use this formula here since we have the condition $x\in \left[ 0,1 \right]$ which is the required condition for the formula.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

