
Prove the following expression $2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)=\dfrac{\pi }{4}$.
Answer
607.2k+ views
Hint:We will use the formulas of trigonometry to which we are familiar. The ones that are used here are $\sin x=\dfrac{\text{perpendicular}}{\text{Hypotenuse}}$ and $\tan x=\dfrac{\text{perpendicular}}{\text{Base}}$ for finding the values of trigonometric terms. Also, we have used ${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)$ to solve the question further.
Complete step-by-step answer:
Let us first consider the expression $2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)=\dfrac{\pi }{4}...(i)$. We will start with substituting ${{\sin }^{-1}}\left( \dfrac{3}{5} \right)=x$. Thus after placing the inverse sine term to the right side of the equation we will get $\dfrac{3}{5}=\sin x$. By the formula $\sin x=\dfrac{\text{perpendicular}}{\text{Hypotenuse}}$ we have 3 as perpendicular and 5 as hypotenuse. The diagram for this is given as
Now we will apply the Pythagoras theorem. Thus we will get,
$\begin{align}
& {{\left( 5 \right)}^{2}}={{y}^{2}}+{{\left( 3 \right)}^{2}} \\
& \Rightarrow 25={{y}^{2}}+9 \\
& \Rightarrow {{y}^{2}}=25-9 \\
& \Rightarrow {{y}^{2}}=16 \\
& \Rightarrow {{y}^{2}}=\sqrt{16} \\
& \Rightarrow y=\pm 4 \\
\end{align}$
As the side of the triangle cannot be negative therefore y = 4. Now we will use the formula given by $\tan x=\dfrac{\text{perpendicular}}{\text{Base}}$. As we have perpendicular as 3 and base as 4. Thus we have $\tan \left( x \right)=\dfrac{3}{4}$. Taking the inverse tangent to the right side of the equation we will have $x={{\tan }^{-1}}\left( \dfrac{3}{4} \right)$. Since, we have ${{\sin }^{-1}}\left( \dfrac{3}{5} \right)=x$ thus, ${{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\tan }^{-1}}\left( \dfrac{3}{4} \right)$. Now, we will substitute this value in the left hand side of the equation (i) which results into $\begin{align}
& 2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)=2{{\tan }^{-1}}\left( \dfrac{3}{4} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right) \\
& \Rightarrow 2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)={{\tan }^{-1}}\left( \dfrac{3}{4} \right)+{{\tan }^{-1}}\left( \dfrac{3}{4} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right) \\
\end{align}$
Now, we will apply the formula given by ${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)$. Thus our equation changes into
$\begin{align}
& 2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)={{\tan }^{-1}}\left( \dfrac{3}{4} \right)+{{\tan }^{-1}}\left( \dfrac{3}{4} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right) \\
& \Rightarrow \Rightarrow 2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)={{\tan }^{-1}}\left( \dfrac{\dfrac{3}{4}+\dfrac{3}{4}}{1-\left( \dfrac{3}{4} \right)\left( \dfrac{3}{4} \right)} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right) \\
& \Rightarrow \Rightarrow 2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)={{\tan }^{-1}}\left( \dfrac{\dfrac{6}{4}}{\dfrac{16-9}{16}} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right) \\
& \Rightarrow 2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)={{\tan }^{-1}}\left( \dfrac{6}{1}\times \dfrac{4}{7} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right) \\
& \Rightarrow 2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)={{\tan }^{-1}}\left( \dfrac{27}{7} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right) \\
\end{align}$
Now we will again apply the formula given by ${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)$. Thus, we get
$\begin{align}
& 2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)={{\tan }^{-1}}\left( \dfrac{\dfrac{24}{7}-\dfrac{17}{31}}{1+\left( \dfrac{24}{7} \right)\left( \dfrac{17}{31} \right)} \right) \\
& \Rightarrow 2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)={{\tan }^{-1}}\left( \dfrac{\dfrac{744-119}{217}}{\dfrac{217+408}{217}} \right) \\
& \Rightarrow 2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)={{\tan }^{-1}}\left( \dfrac{645}{645} \right) \\
& \Rightarrow 2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)={{\tan }^{-1}}\left( 1 \right) \\
\end{align}$
As we know that the value of ${{\tan }^{-1}}\left( \dfrac{\pi }{4} \right)=1$ and ${{\tan }^{-1}}\tan \left( x \right)=x$ we can have
$\begin{align}
& 2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)={{\tan }^{-1}}\left( 1 \right) \\
& \Rightarrow 2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)={{\tan }^{-1}}\left( \tan \left( \dfrac{\pi }{4} \right) \right) \\
& \Rightarrow 2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)=\dfrac{\pi }{4} \\
\end{align}$
Hence, the value of the expression $2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)=\dfrac{\pi }{4}$.
Note: Alternatively we could have used the formula given by $\tan \left( 2x \right)=\dfrac{2\tan \left( x \right)}{1-{{\tan }^{2}}\left( x \right)}$ after $\tan \left( x \right)=\dfrac{3}{4}$. By this we can directly do the substitution $2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)$ in expression (i). Also, instead of splitting $2{{\tan }^{-1}}\left( \dfrac{3}{4} \right)$ into ${{\tan }^{-1}}\left( \dfrac{3}{4} \right)+{{\tan }^{-1}}\left( \dfrac{3}{4} \right)$ we could have used the formula of $2{{\tan }^{-1}}\left( x \right)={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)$ and proceeded further. Moreover, instead of converting the inverse sine term into tangent with the help of diagram and Pythagoras we could have use direct formula for converting it. The formula for this is given by ${{\sin }^{-1}}x={{\tan }^{-1}}\left( \dfrac{x}{\sqrt{1-{{x}^{2}}}} \right)$.
Complete step-by-step answer:
Let us first consider the expression $2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)=\dfrac{\pi }{4}...(i)$. We will start with substituting ${{\sin }^{-1}}\left( \dfrac{3}{5} \right)=x$. Thus after placing the inverse sine term to the right side of the equation we will get $\dfrac{3}{5}=\sin x$. By the formula $\sin x=\dfrac{\text{perpendicular}}{\text{Hypotenuse}}$ we have 3 as perpendicular and 5 as hypotenuse. The diagram for this is given as
Now we will apply the Pythagoras theorem. Thus we will get,
$\begin{align}
& {{\left( 5 \right)}^{2}}={{y}^{2}}+{{\left( 3 \right)}^{2}} \\
& \Rightarrow 25={{y}^{2}}+9 \\
& \Rightarrow {{y}^{2}}=25-9 \\
& \Rightarrow {{y}^{2}}=16 \\
& \Rightarrow {{y}^{2}}=\sqrt{16} \\
& \Rightarrow y=\pm 4 \\
\end{align}$
As the side of the triangle cannot be negative therefore y = 4. Now we will use the formula given by $\tan x=\dfrac{\text{perpendicular}}{\text{Base}}$. As we have perpendicular as 3 and base as 4. Thus we have $\tan \left( x \right)=\dfrac{3}{4}$. Taking the inverse tangent to the right side of the equation we will have $x={{\tan }^{-1}}\left( \dfrac{3}{4} \right)$. Since, we have ${{\sin }^{-1}}\left( \dfrac{3}{5} \right)=x$ thus, ${{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\tan }^{-1}}\left( \dfrac{3}{4} \right)$. Now, we will substitute this value in the left hand side of the equation (i) which results into $\begin{align}
& 2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)=2{{\tan }^{-1}}\left( \dfrac{3}{4} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right) \\
& \Rightarrow 2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)={{\tan }^{-1}}\left( \dfrac{3}{4} \right)+{{\tan }^{-1}}\left( \dfrac{3}{4} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right) \\
\end{align}$
Now, we will apply the formula given by ${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)$. Thus our equation changes into
$\begin{align}
& 2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)={{\tan }^{-1}}\left( \dfrac{3}{4} \right)+{{\tan }^{-1}}\left( \dfrac{3}{4} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right) \\
& \Rightarrow \Rightarrow 2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)={{\tan }^{-1}}\left( \dfrac{\dfrac{3}{4}+\dfrac{3}{4}}{1-\left( \dfrac{3}{4} \right)\left( \dfrac{3}{4} \right)} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right) \\
& \Rightarrow \Rightarrow 2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)={{\tan }^{-1}}\left( \dfrac{\dfrac{6}{4}}{\dfrac{16-9}{16}} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right) \\
& \Rightarrow 2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)={{\tan }^{-1}}\left( \dfrac{6}{1}\times \dfrac{4}{7} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right) \\
& \Rightarrow 2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)={{\tan }^{-1}}\left( \dfrac{27}{7} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right) \\
\end{align}$
Now we will again apply the formula given by ${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)$. Thus, we get
$\begin{align}
& 2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)={{\tan }^{-1}}\left( \dfrac{\dfrac{24}{7}-\dfrac{17}{31}}{1+\left( \dfrac{24}{7} \right)\left( \dfrac{17}{31} \right)} \right) \\
& \Rightarrow 2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)={{\tan }^{-1}}\left( \dfrac{\dfrac{744-119}{217}}{\dfrac{217+408}{217}} \right) \\
& \Rightarrow 2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)={{\tan }^{-1}}\left( \dfrac{645}{645} \right) \\
& \Rightarrow 2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)={{\tan }^{-1}}\left( 1 \right) \\
\end{align}$
As we know that the value of ${{\tan }^{-1}}\left( \dfrac{\pi }{4} \right)=1$ and ${{\tan }^{-1}}\tan \left( x \right)=x$ we can have
$\begin{align}
& 2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)={{\tan }^{-1}}\left( 1 \right) \\
& \Rightarrow 2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)={{\tan }^{-1}}\left( \tan \left( \dfrac{\pi }{4} \right) \right) \\
& \Rightarrow 2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)=\dfrac{\pi }{4} \\
\end{align}$
Hence, the value of the expression $2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)-{{\tan }^{-1}}\left( \dfrac{17}{31} \right)=\dfrac{\pi }{4}$.
Note: Alternatively we could have used the formula given by $\tan \left( 2x \right)=\dfrac{2\tan \left( x \right)}{1-{{\tan }^{2}}\left( x \right)}$ after $\tan \left( x \right)=\dfrac{3}{4}$. By this we can directly do the substitution $2{{\sin }^{-1}}\left( \dfrac{3}{5} \right)$ in expression (i). Also, instead of splitting $2{{\tan }^{-1}}\left( \dfrac{3}{4} \right)$ into ${{\tan }^{-1}}\left( \dfrac{3}{4} \right)+{{\tan }^{-1}}\left( \dfrac{3}{4} \right)$ we could have used the formula of $2{{\tan }^{-1}}\left( x \right)={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)$ and proceeded further. Moreover, instead of converting the inverse sine term into tangent with the help of diagram and Pythagoras we could have use direct formula for converting it. The formula for this is given by ${{\sin }^{-1}}x={{\tan }^{-1}}\left( \dfrac{x}{\sqrt{1-{{x}^{2}}}} \right)$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

