
Prove the equation ${{\sin }^{-1}}\left( \dfrac{8}{17} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\cos }^{-1}}\left( \dfrac{36}{65} \right)$.
Answer
578.4k+ views
Hint: To solve this question, we should know the relation between the trigonometric ratios sine and cosine. We know the relation ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$ which implies that $\cos \theta =\sqrt{1-{{\sin }^{2}}\theta }$. We should assume the terms in L.H.S as two different angles, that is, $\alpha ={{\sin }^{-1}}\left( \dfrac{8}{17} \right),\beta ={{\sin }^{-1}}\left( \dfrac{3}{5} \right)$. From these equations, we can write the values of $\sin \alpha ,\sin \beta ,\cos \alpha ,\cos \beta $. We have to evaluate the value of $\cos \left( \alpha +\beta \right)$ and by applying ${{\cos }^{-1}}$ to the equation, we get the required result.
Complete step by step answer:
Let us consider the two inverse sine terms in the L.H.S as two different angles.
$\alpha ={{\sin }^{-1}}\left( \dfrac{8}{17} \right)$
$\beta ={{\sin }^{-1}}\left( \dfrac{3}{5} \right)$
Applying sine on both sides in the above two equations, we get
$\begin{align}
& \sin \alpha =\dfrac{8}{17} \\
& \sin \beta =\dfrac{3}{5} \\
\end{align}$
We know the relation between sine and cosine functions as
${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$
Subtracting ${{\sin }^{2}}\theta $ on both sides, we get
${{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta $
Applying square root on both sides, we get
$\cos \theta =\sqrt{1-{{\sin }^{2}}\theta }$
Using the above relation to get the values of $\cos \alpha ,\cos \beta $, we get
$\begin{align}
& \cos \alpha =\sqrt{1-{{\sin }^{2}}\alpha } \\
& \cos \alpha =\sqrt{1-{{\left( \dfrac{8}{17} \right)}^{2}}} \\
& \cos \alpha =\sqrt{1-\dfrac{64}{289}}=\sqrt{\dfrac{289-64}{289}}=\sqrt{\dfrac{225}{289}}=\dfrac{15}{17} \\
\end{align}$
$\begin{align}
& \cos \beta =\sqrt{1-{{\sin }^{2}}\beta } \\
& \cos \beta =\sqrt{1-{{\left( \dfrac{3}{5} \right)}^{2}}} \\
& \cos \beta =\sqrt{1-\dfrac{9}{25}}=\sqrt{\dfrac{25-9}{25}}=\sqrt{\dfrac{16}{25}}=\dfrac{4}{5} \\
\end{align}$
In the question, the L.H.S is in the form of $\alpha +\beta $ and the R.H.S contains ${{\cos }^{-1}}$ term in it. So, let us consider $\cos \left( \alpha +\beta \right)$
We know the relation $\cos (A+B)=\cos A\cos B-\sin A\sin B$
Using this relation, we get
$\cos (\alpha +\beta )=\cos \alpha \cos \beta -\sin \alpha \sin \beta $
Substituting the values of $\sin \alpha ,\sin \beta ,\cos \alpha ,\cos \beta $ in the above equation, we get
$\cos \left( \alpha +\beta \right)=\dfrac{15}{17}\times \dfrac{4}{5}-\dfrac{8}{17}\times \dfrac{3}{5}=\dfrac{60}{85}-\dfrac{24}{85}$
As the denominator is same, we can simplify the fraction as
$\cos \left( \alpha +\beta \right)=\dfrac{60-24}{85}=\dfrac{36}{85}$
By applying the function of ${{\cos }^{-1}}$ on both sides, we get
${{\cos }^{-1}}\left( \cos \left( \alpha +\beta \right) \right)={{\cos }^{-1}}\left( \dfrac{36}{85} \right)\to \left( 1 \right)$
We know that $0<\alpha ,\beta <\dfrac{\pi }{2}$ from the inference that both the ${{\sin }^{-1}}$ values are positive,
$0<\alpha +\beta <\pi $.
So we can write that ${{\cos }^{-1}}\left( \cos \left( \alpha +\beta \right) \right)=\alpha +\beta $,
Rewriting the equation-1, we get
$\alpha +\beta ={{\cos }^{-1}}\left( \dfrac{36}{85} \right)$
Substituting the values of $\alpha ,\beta $, we get
${{\sin }^{-1}}\left( \dfrac{8}{17} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\cos }^{-1}}\left( \dfrac{36}{65} \right)$
$\therefore $The statement ${{\sin }^{-1}}\left( \dfrac{8}{17} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\cos }^{-1}}\left( \dfrac{36}{65} \right)$ is proved.
Note:
The alternate way to do this problem is by applying cosine function in the first step of the solution. Applying cosine function and using $\cos (\alpha +\beta )=\cos \alpha \cos \beta -\sin \alpha \sin \beta $, we get
$\begin{align}
& \cos \left( {{\sin }^{-1}}\left( \dfrac{8}{17} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right) \right)=\cos \left( {{\sin }^{-1}}\left( \dfrac{8}{17} \right) \right)\cos \left( {{\sin }^{-1}}\left( \dfrac{3}{5} \right) \right)-\sin \left( {{\sin }^{-1}}\left( \dfrac{8}{17} \right) \right)\sin \left( {{\sin }^{-1}}\left( \dfrac{3}{5} \right) \right) \\
& \Rightarrow \cos \left( {{\sin }^{-1}}\left( \dfrac{8}{17} \right) \right)\cos \left( {{\sin }^{-1}}\left( \dfrac{3}{5} \right) \right)-\dfrac{8}{17}\times \dfrac{3}{5} \\
\end{align}$
We know the formula ${{\sin }^{-1}}\dfrac{x}{y}={{\cos }^{-1}}\dfrac{\sqrt{{{y}^{2}}-{{x}^{2}}}}{y}$.
Using this relation, we get
$\cos \left( {{\cos }^{-1}}\left( \dfrac{15}{17} \right) \right)\cos \left( {{\cos }^{-1}}\left( \dfrac{4}{5} \right) \right)-\dfrac{8}{17}\times \dfrac{3}{5}=\dfrac{15}{17}\times \dfrac{4}{5}-\dfrac{8}{17}\times \dfrac{3}{5}=\dfrac{36}{65}$
$\begin{align}
& \cos \left( {{\sin }^{-1}}\left( \dfrac{8}{17} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right) \right)=\dfrac{36}{65} \\
& {{\sin }^{-1}}\left( \dfrac{8}{17} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\cos }^{-1}}\left( \dfrac{36}{65} \right) \\
\end{align}$
Complete step by step answer:
Let us consider the two inverse sine terms in the L.H.S as two different angles.
$\alpha ={{\sin }^{-1}}\left( \dfrac{8}{17} \right)$
$\beta ={{\sin }^{-1}}\left( \dfrac{3}{5} \right)$
Applying sine on both sides in the above two equations, we get
$\begin{align}
& \sin \alpha =\dfrac{8}{17} \\
& \sin \beta =\dfrac{3}{5} \\
\end{align}$
We know the relation between sine and cosine functions as
${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$
Subtracting ${{\sin }^{2}}\theta $ on both sides, we get
${{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta $
Applying square root on both sides, we get
$\cos \theta =\sqrt{1-{{\sin }^{2}}\theta }$
Using the above relation to get the values of $\cos \alpha ,\cos \beta $, we get
$\begin{align}
& \cos \alpha =\sqrt{1-{{\sin }^{2}}\alpha } \\
& \cos \alpha =\sqrt{1-{{\left( \dfrac{8}{17} \right)}^{2}}} \\
& \cos \alpha =\sqrt{1-\dfrac{64}{289}}=\sqrt{\dfrac{289-64}{289}}=\sqrt{\dfrac{225}{289}}=\dfrac{15}{17} \\
\end{align}$
$\begin{align}
& \cos \beta =\sqrt{1-{{\sin }^{2}}\beta } \\
& \cos \beta =\sqrt{1-{{\left( \dfrac{3}{5} \right)}^{2}}} \\
& \cos \beta =\sqrt{1-\dfrac{9}{25}}=\sqrt{\dfrac{25-9}{25}}=\sqrt{\dfrac{16}{25}}=\dfrac{4}{5} \\
\end{align}$
In the question, the L.H.S is in the form of $\alpha +\beta $ and the R.H.S contains ${{\cos }^{-1}}$ term in it. So, let us consider $\cos \left( \alpha +\beta \right)$
We know the relation $\cos (A+B)=\cos A\cos B-\sin A\sin B$
Using this relation, we get
$\cos (\alpha +\beta )=\cos \alpha \cos \beta -\sin \alpha \sin \beta $
Substituting the values of $\sin \alpha ,\sin \beta ,\cos \alpha ,\cos \beta $ in the above equation, we get
$\cos \left( \alpha +\beta \right)=\dfrac{15}{17}\times \dfrac{4}{5}-\dfrac{8}{17}\times \dfrac{3}{5}=\dfrac{60}{85}-\dfrac{24}{85}$
As the denominator is same, we can simplify the fraction as
$\cos \left( \alpha +\beta \right)=\dfrac{60-24}{85}=\dfrac{36}{85}$
By applying the function of ${{\cos }^{-1}}$ on both sides, we get
${{\cos }^{-1}}\left( \cos \left( \alpha +\beta \right) \right)={{\cos }^{-1}}\left( \dfrac{36}{85} \right)\to \left( 1 \right)$
We know that $0<\alpha ,\beta <\dfrac{\pi }{2}$ from the inference that both the ${{\sin }^{-1}}$ values are positive,
$0<\alpha +\beta <\pi $.
So we can write that ${{\cos }^{-1}}\left( \cos \left( \alpha +\beta \right) \right)=\alpha +\beta $,
Rewriting the equation-1, we get
$\alpha +\beta ={{\cos }^{-1}}\left( \dfrac{36}{85} \right)$
Substituting the values of $\alpha ,\beta $, we get
${{\sin }^{-1}}\left( \dfrac{8}{17} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\cos }^{-1}}\left( \dfrac{36}{65} \right)$
$\therefore $The statement ${{\sin }^{-1}}\left( \dfrac{8}{17} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\cos }^{-1}}\left( \dfrac{36}{65} \right)$ is proved.
Note:
The alternate way to do this problem is by applying cosine function in the first step of the solution. Applying cosine function and using $\cos (\alpha +\beta )=\cos \alpha \cos \beta -\sin \alpha \sin \beta $, we get
$\begin{align}
& \cos \left( {{\sin }^{-1}}\left( \dfrac{8}{17} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right) \right)=\cos \left( {{\sin }^{-1}}\left( \dfrac{8}{17} \right) \right)\cos \left( {{\sin }^{-1}}\left( \dfrac{3}{5} \right) \right)-\sin \left( {{\sin }^{-1}}\left( \dfrac{8}{17} \right) \right)\sin \left( {{\sin }^{-1}}\left( \dfrac{3}{5} \right) \right) \\
& \Rightarrow \cos \left( {{\sin }^{-1}}\left( \dfrac{8}{17} \right) \right)\cos \left( {{\sin }^{-1}}\left( \dfrac{3}{5} \right) \right)-\dfrac{8}{17}\times \dfrac{3}{5} \\
\end{align}$
We know the formula ${{\sin }^{-1}}\dfrac{x}{y}={{\cos }^{-1}}\dfrac{\sqrt{{{y}^{2}}-{{x}^{2}}}}{y}$.
Using this relation, we get
$\cos \left( {{\cos }^{-1}}\left( \dfrac{15}{17} \right) \right)\cos \left( {{\cos }^{-1}}\left( \dfrac{4}{5} \right) \right)-\dfrac{8}{17}\times \dfrac{3}{5}=\dfrac{15}{17}\times \dfrac{4}{5}-\dfrac{8}{17}\times \dfrac{3}{5}=\dfrac{36}{65}$
$\begin{align}
& \cos \left( {{\sin }^{-1}}\left( \dfrac{8}{17} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right) \right)=\dfrac{36}{65} \\
& {{\sin }^{-1}}\left( \dfrac{8}{17} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\cos }^{-1}}\left( \dfrac{36}{65} \right) \\
\end{align}$
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

