
Prove that the trigonometric expression $2{\tan ^{ - 1}}x = {\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)$ holds true.
Answer
614.7k+ views
Hint – In this question consider the L.H.S part and break $2{\tan ^{ - 1}}x$ into ${\tan ^{ - 1}}x + {\tan ^{ - 1}}x$, then apply the formula${\tan ^{ - 1}}A + {\tan ^{ - 1}}B = {\tan ^{ - 1}}\left( {\dfrac{{A + B}}{{1 - AB}}} \right)$. Then convert trigonometric identity of ${\tan ^{ - 1}}x{\text{ into si}}{{\text{n}}^{ - 1}}x$ to get the proof.
Complete step-by-step solution -
Proof –
Consider L.H.S
$ \Rightarrow 2{\tan ^{ - 1}}x$
This is written as
$ \Rightarrow {\tan ^{ - 1}}x + {\tan ^{ - 1}}x$
Now as we know that ${\tan ^{ - 1}}A + {\tan ^{ - 1}}B = {\tan ^{ - 1}}\left( {\dfrac{{A + B}}{{1 - AB}}} \right)$ so use this property in above equation we have,
$ \Rightarrow {\tan ^{ - 1}}x + {\tan ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{{x + x}}{{1 - {x^2}}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)$
Now let
y = ${\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)$................. (1)
$ \Rightarrow \tan y = \left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)$
Now as we know tan is ratio of perpendicular to base
Therefore perpendicular = 2x
And base = $(1 – {x^2})$.
Now apply Pythagoras theorem in right triangle ABC as shown above we have,
\[ \Rightarrow {\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{perpendicular}}} \right)^2} + {\left( {{\text{base}}} \right)^2}\]
\[ \Rightarrow {\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {2x} \right)^2} + {\left( {1 - {x^2}} \right)^2}\]
Now simplify this we have,
\[ \Rightarrow {\left( {{\text{Hypotenuse}}} \right)^2} = 4{x^2} + 1 + {x^4} - 2{x^2} = 1 + 2{x^2} + {x^4} = {\left( {1 + {x^2}} \right)^2}\]
Therefore, \[\left( {{\text{Hypotenuse}}} \right) = \left( {1 + {x^2}} \right)\]
Now as we know sin is the ratio of perpendicular to hypotenuse so we have,
$ \Rightarrow \sin y = \dfrac{{2x}}{{1 + {x^2}}}$
$ \Rightarrow y = {\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)$
So from equation (1) we have,
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right) = {\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)$
= L.H.S
Hence proved.
Note – The conversion of one inverse trigonometric identity into another is based upon the same concept as that of conversion of a normal trigonometric ratio into another. A right angled triangle depicting sides of perpendicular, base and hypotenuse, helps establish relations.
Complete step-by-step solution -
Proof –
Consider L.H.S
$ \Rightarrow 2{\tan ^{ - 1}}x$
This is written as
$ \Rightarrow {\tan ^{ - 1}}x + {\tan ^{ - 1}}x$
Now as we know that ${\tan ^{ - 1}}A + {\tan ^{ - 1}}B = {\tan ^{ - 1}}\left( {\dfrac{{A + B}}{{1 - AB}}} \right)$ so use this property in above equation we have,
$ \Rightarrow {\tan ^{ - 1}}x + {\tan ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{{x + x}}{{1 - {x^2}}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)$
Now let
y = ${\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)$................. (1)
$ \Rightarrow \tan y = \left( {\dfrac{{2x}}{{1 - {x^2}}}} \right)$
Now as we know tan is ratio of perpendicular to base
Therefore perpendicular = 2x
And base = $(1 – {x^2})$.
Now apply Pythagoras theorem in right triangle ABC as shown above we have,
\[ \Rightarrow {\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{perpendicular}}} \right)^2} + {\left( {{\text{base}}} \right)^2}\]
\[ \Rightarrow {\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {2x} \right)^2} + {\left( {1 - {x^2}} \right)^2}\]
Now simplify this we have,
\[ \Rightarrow {\left( {{\text{Hypotenuse}}} \right)^2} = 4{x^2} + 1 + {x^4} - 2{x^2} = 1 + 2{x^2} + {x^4} = {\left( {1 + {x^2}} \right)^2}\]
Therefore, \[\left( {{\text{Hypotenuse}}} \right) = \left( {1 + {x^2}} \right)\]
Now as we know sin is the ratio of perpendicular to hypotenuse so we have,
$ \Rightarrow \sin y = \dfrac{{2x}}{{1 + {x^2}}}$
$ \Rightarrow y = {\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)$
So from equation (1) we have,
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{2x}}{{1 - {x^2}}}} \right) = {\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)$
= L.H.S
Hence proved.
Note – The conversion of one inverse trigonometric identity into another is based upon the same concept as that of conversion of a normal trigonometric ratio into another. A right angled triangle depicting sides of perpendicular, base and hypotenuse, helps establish relations.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

