
Prove that the equal chords of two congruent circles subtend equal angles at their respective centres.
Answer
509.7k+ views
Hint: Use the fact that the radii of two congruent circles are equal and hence prove that OA = O’A’ and OB = O’B’. Use the fact that since the chords are equal AB = A’B’ and hence prove that the triangle ABC and A’B’C’ are congruent and hence prove that $\angle AOC=\angle A'O'C'$. Hence prove that the equal chords of congruent circles subtend equal angles at the centres of their corresponding circles.
Complete step by step answer:
Given: Two circles with centre O and O’ have equal radii. AB is the chord of the circle with centre O and A’B’ is a chord of the circle with centre O’.
To prove $\angle AOB=\angle A'O'B'$
Proof:
Since the circle have equal radii, we have
OA = O’A’ and OB = O’B’
Now, in triangle AOB and A’O’B’, we have
AO = A’O’ (proved above)
OB = O’B’ (Proved above)
AB = A’B’ (Given).
Hence by S.S.S congruence criterion, we have
$\Delta AOB\cong \Delta A'O'B'$
Hence, we have
$\angle AOB=\angle A'O'B'$ (Corresponding parts of congruent triangles)
Hence, equal chords of two congruent circles subtend equal angles at their respective centres.
Hence, proved.
Note: Alternative Solution: Using Sine rule.
We know that if R is the radius of circumcentre of a triangle ABC, then $\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=2R$
Consider two points C and C’ on the alternate segments as shown in the diagram above.
By sine rule, we have
$\begin{align}
& \dfrac{AB}{\sin C}=2R \\
& \Rightarrow AB=2R\sin C \\
\end{align}$
Similarly, we have
$A'B'=2R\sin C'$
Since AB = A’B’, we have
$\begin{align}
& 2R\sin C=2R\sin C' \\
& \Rightarrow \sin C=\sin C' \\
& \Rightarrow C=C' \\
\end{align}$
We know that the angle subtended in the alternate segment is half the angle subtended at the centre.
Hence, we have
$\angle AOB=2\angle C$ and $\angle A'O'B'=2\angle C'$
Since $\angle C=\angle C'$, we have
$\angle AOB=\angle A'O'B'$
Q.E.D
Complete step by step answer:
Given: Two circles with centre O and O’ have equal radii. AB is the chord of the circle with centre O and A’B’ is a chord of the circle with centre O’.
To prove $\angle AOB=\angle A'O'B'$
Proof:
Since the circle have equal radii, we have
OA = O’A’ and OB = O’B’
Now, in triangle AOB and A’O’B’, we have
AO = A’O’ (proved above)
OB = O’B’ (Proved above)
AB = A’B’ (Given).
Hence by S.S.S congruence criterion, we have
$\Delta AOB\cong \Delta A'O'B'$
Hence, we have
$\angle AOB=\angle A'O'B'$ (Corresponding parts of congruent triangles)
Hence, equal chords of two congruent circles subtend equal angles at their respective centres.
Hence, proved.
Note: Alternative Solution: Using Sine rule.
We know that if R is the radius of circumcentre of a triangle ABC, then $\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=2R$
Consider two points C and C’ on the alternate segments as shown in the diagram above.
By sine rule, we have
$\begin{align}
& \dfrac{AB}{\sin C}=2R \\
& \Rightarrow AB=2R\sin C \\
\end{align}$
Similarly, we have
$A'B'=2R\sin C'$
Since AB = A’B’, we have
$\begin{align}
& 2R\sin C=2R\sin C' \\
& \Rightarrow \sin C=\sin C' \\
& \Rightarrow C=C' \\
\end{align}$
We know that the angle subtended in the alternate segment is half the angle subtended at the centre.
Hence, we have
$\angle AOB=2\angle C$ and $\angle A'O'B'=2\angle C'$
Since $\angle C=\angle C'$, we have
$\angle AOB=\angle A'O'B'$
Q.E.D
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

