
Prove that the area of a circular path of uniform width h surrounding a circular region of radius r is $\pi h\left( 2r+h \right)$.
Answer
604.8k+ views
- Hint: We will be using the concept of area of circle. We know that the area of the circle is $\pi {{r}^{2}}$. Also, we will be using algebraic identities like ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$.
Complete step-by-step solution -
We have to prove that the area of a circular path of width h surrounding a circular region of radius r is $\pi h\left( 2r+h \right)$.
Now, we will draw the diagram according to the question.
Now, we have to find the area of the shaded region.
Now, area of the shaded region can be founded as = Area of outer circle – Area of inner circle.
Radius of outer circle = r + h
$\begin{align}
& =\pi {{\left( r+h \right)}^{2}}=\pi {{r}^{2}} \\
& =\pi \left( {{\left( r+h \right)}^{2}}-{{r}^{2}} \right) \\
\end{align}$
Now, we will use ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$.
$\begin{align}
& =\pi \left( r+h+r \right)\left( r+h-r \right) \\
& =\pi \left( 2r+h \right)h \\
& =\pi h\left( 2r+h \right) \\
\end{align}$
Hence, prove that the area of the circular path is $\pi h\left( 2r+h \right)$.
Note: To solve these type of questions drawing a diagram which clearly represents the situation helps to simplify the problem
Complete step-by-step solution -
We have to prove that the area of a circular path of width h surrounding a circular region of radius r is $\pi h\left( 2r+h \right)$.
Now, we will draw the diagram according to the question.
Now, we have to find the area of the shaded region.
Now, area of the shaded region can be founded as = Area of outer circle – Area of inner circle.
Radius of outer circle = r + h
$\begin{align}
& =\pi {{\left( r+h \right)}^{2}}=\pi {{r}^{2}} \\
& =\pi \left( {{\left( r+h \right)}^{2}}-{{r}^{2}} \right) \\
\end{align}$
Now, we will use ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$.
$\begin{align}
& =\pi \left( r+h+r \right)\left( r+h-r \right) \\
& =\pi \left( 2r+h \right)h \\
& =\pi h\left( 2r+h \right) \\
\end{align}$
Hence, prove that the area of the circular path is $\pi h\left( 2r+h \right)$.
Note: To solve these type of questions drawing a diagram which clearly represents the situation helps to simplify the problem
Recently Updated Pages
What happens to glucose which enters nephron along class 10 biology CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

When the JanmiKudian Act was passed that granted the class 10 social science CBSE

A sector containing an angle of 120 circ is cut off class 10 maths CBSE

The sum of digits of a two digit number is 13 If t-class-10-maths-ICSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove the Pythagoras theorem-class-10-maths-CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

A Paragraph on Pollution in about 100-150 Words

