
Prove that: $\tan {{70}^{\circ }}=\tan {{20}^{\circ }}+2\tan {{50}^{\circ }}$.
Answer
576.9k+ views
Hint: We have a tangent of angle as: $\tan {{70}^{\circ }}$ . We can write this expression as: $\tan {{\left( 20+50 \right)}^{\circ }}$
Now, by addition rule of tangent of angles, i.e. $\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A.\tan B}$ solve the expression $\tan {{\left( 20+50 \right)}^{\circ }}$.Then check if you can convert any angles into cotangent and cancel out the terms to get the final expression $\tan {{70}^{\circ }}=\tan {{20}^{\circ }}+2\tan {{50}^{\circ }}$.
Complete step by step answer:
We have the following expression: $\tan {{70}^{\circ }}......(1)$
We can write equation (1) as:
$\tan {{70}^{\circ }}=\tan {{\left( 20+50 \right)}^{\circ }}......(2)$
Now, by using addition rule of tangent of angles, i.e. $\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A.\tan B}$ for equation (2), we get:
$\tan {{70}^{\circ }}=\dfrac{\tan {{20}^{\circ }}+\tan {{50}^{\circ }}}{1-\tan {{20}^{\circ }}.\tan {{50}^{\circ }}}......(3)$
We can also write equation (3) as:
\[\tan {{70}^{\circ }}\left( 1-\tan {{20}^{\circ }}.\tan {{50}^{\circ }} \right)=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}......(4)\]
Now, expand equation (4), we get:
\[\left( \tan {{70}^{\circ }}-\tan {{20}^{\circ }}.\tan {{50}^{\circ }}\tan {{70}^{\circ }} \right)=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}......(5)\]
We can write equation (5) as:
\[\tan {{70}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}+\tan {{20}^{\circ }}.\tan {{50}^{\circ }}\tan {{70}^{\circ }}......(6)\]
We can write $\tan {{20}^{\circ }}=\tan {{\left( 90-70 \right)}^{\circ }}$
We get:
\[\tan {{70}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}+\tan {{\left( 90-70 \right)}^{\circ }}.\tan {{50}^{\circ }}\tan {{70}^{\circ }}......(7)\]
We know that $\tan \left( 90-\theta \right)=\cot \theta $
So, we get:
\[\tan {{70}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}+\cot {{70}^{\circ }}.\tan {{50}^{\circ }}\tan {{70}^{\circ }}......(8)\]
Also, we know that: $\tan \theta .\cot \theta =1$
So, we get:
\[\begin{align}
& \Rightarrow \tan {{70}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}+\tan {{50}^{\circ }} \\
& \Rightarrow \tan {{70}^{\circ }}=\tan {{20}^{\circ }}+2\tan {{50}^{\circ }} \\
\end{align}\]
Hence proved that $\tan {{70}^{\circ }}=\tan {{20}^{\circ }}+2\tan {{50}^{\circ }}$.
Note:
Always remember that, whenever we are given to solve an expression having tangent of angles, try to solve it by addition rule for tangent of angles, i.e. $\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A.\tan B}$ or subtraction rule of tangent of angles, i.e. $\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A.\tan B}$ . Also, we can turn angles into cotangent and cancel out the terms to make the expression simpler.
Now, by addition rule of tangent of angles, i.e. $\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A.\tan B}$ solve the expression $\tan {{\left( 20+50 \right)}^{\circ }}$.Then check if you can convert any angles into cotangent and cancel out the terms to get the final expression $\tan {{70}^{\circ }}=\tan {{20}^{\circ }}+2\tan {{50}^{\circ }}$.
Complete step by step answer:
We have the following expression: $\tan {{70}^{\circ }}......(1)$
We can write equation (1) as:
$\tan {{70}^{\circ }}=\tan {{\left( 20+50 \right)}^{\circ }}......(2)$
Now, by using addition rule of tangent of angles, i.e. $\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A.\tan B}$ for equation (2), we get:
$\tan {{70}^{\circ }}=\dfrac{\tan {{20}^{\circ }}+\tan {{50}^{\circ }}}{1-\tan {{20}^{\circ }}.\tan {{50}^{\circ }}}......(3)$
We can also write equation (3) as:
\[\tan {{70}^{\circ }}\left( 1-\tan {{20}^{\circ }}.\tan {{50}^{\circ }} \right)=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}......(4)\]
Now, expand equation (4), we get:
\[\left( \tan {{70}^{\circ }}-\tan {{20}^{\circ }}.\tan {{50}^{\circ }}\tan {{70}^{\circ }} \right)=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}......(5)\]
We can write equation (5) as:
\[\tan {{70}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}+\tan {{20}^{\circ }}.\tan {{50}^{\circ }}\tan {{70}^{\circ }}......(6)\]
We can write $\tan {{20}^{\circ }}=\tan {{\left( 90-70 \right)}^{\circ }}$
We get:
\[\tan {{70}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}+\tan {{\left( 90-70 \right)}^{\circ }}.\tan {{50}^{\circ }}\tan {{70}^{\circ }}......(7)\]
We know that $\tan \left( 90-\theta \right)=\cot \theta $
So, we get:
\[\tan {{70}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}+\cot {{70}^{\circ }}.\tan {{50}^{\circ }}\tan {{70}^{\circ }}......(8)\]
Also, we know that: $\tan \theta .\cot \theta =1$
So, we get:
\[\begin{align}
& \Rightarrow \tan {{70}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}+\tan {{50}^{\circ }} \\
& \Rightarrow \tan {{70}^{\circ }}=\tan {{20}^{\circ }}+2\tan {{50}^{\circ }} \\
\end{align}\]
Hence proved that $\tan {{70}^{\circ }}=\tan {{20}^{\circ }}+2\tan {{50}^{\circ }}$.
Note:
Always remember that, whenever we are given to solve an expression having tangent of angles, try to solve it by addition rule for tangent of angles, i.e. $\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A.\tan B}$ or subtraction rule of tangent of angles, i.e. $\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A.\tan B}$ . Also, we can turn angles into cotangent and cancel out the terms to make the expression simpler.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

