
Prove that: $\tan {{70}^{\circ }}=\tan {{20}^{\circ }}+2\tan {{50}^{\circ }}$.
Answer
506.4k+ views
Hint: We have a tangent of angle as: $\tan {{70}^{\circ }}$ . We can write this expression as: $\tan {{\left( 20+50 \right)}^{\circ }}$
Now, by addition rule of tangent of angles, i.e. $\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A.\tan B}$ solve the expression $\tan {{\left( 20+50 \right)}^{\circ }}$.Then check if you can convert any angles into cotangent and cancel out the terms to get the final expression $\tan {{70}^{\circ }}=\tan {{20}^{\circ }}+2\tan {{50}^{\circ }}$.
Complete step by step answer:
We have the following expression: $\tan {{70}^{\circ }}......(1)$
We can write equation (1) as:
$\tan {{70}^{\circ }}=\tan {{\left( 20+50 \right)}^{\circ }}......(2)$
Now, by using addition rule of tangent of angles, i.e. $\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A.\tan B}$ for equation (2), we get:
$\tan {{70}^{\circ }}=\dfrac{\tan {{20}^{\circ }}+\tan {{50}^{\circ }}}{1-\tan {{20}^{\circ }}.\tan {{50}^{\circ }}}......(3)$
We can also write equation (3) as:
\[\tan {{70}^{\circ }}\left( 1-\tan {{20}^{\circ }}.\tan {{50}^{\circ }} \right)=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}......(4)\]
Now, expand equation (4), we get:
\[\left( \tan {{70}^{\circ }}-\tan {{20}^{\circ }}.\tan {{50}^{\circ }}\tan {{70}^{\circ }} \right)=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}......(5)\]
We can write equation (5) as:
\[\tan {{70}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}+\tan {{20}^{\circ }}.\tan {{50}^{\circ }}\tan {{70}^{\circ }}......(6)\]
We can write $\tan {{20}^{\circ }}=\tan {{\left( 90-70 \right)}^{\circ }}$
We get:
\[\tan {{70}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}+\tan {{\left( 90-70 \right)}^{\circ }}.\tan {{50}^{\circ }}\tan {{70}^{\circ }}......(7)\]
We know that $\tan \left( 90-\theta \right)=\cot \theta $
So, we get:
\[\tan {{70}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}+\cot {{70}^{\circ }}.\tan {{50}^{\circ }}\tan {{70}^{\circ }}......(8)\]
Also, we know that: $\tan \theta .\cot \theta =1$
So, we get:
\[\begin{align}
& \Rightarrow \tan {{70}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}+\tan {{50}^{\circ }} \\
& \Rightarrow \tan {{70}^{\circ }}=\tan {{20}^{\circ }}+2\tan {{50}^{\circ }} \\
\end{align}\]
Hence proved that $\tan {{70}^{\circ }}=\tan {{20}^{\circ }}+2\tan {{50}^{\circ }}$.
Note:
Always remember that, whenever we are given to solve an expression having tangent of angles, try to solve it by addition rule for tangent of angles, i.e. $\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A.\tan B}$ or subtraction rule of tangent of angles, i.e. $\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A.\tan B}$ . Also, we can turn angles into cotangent and cancel out the terms to make the expression simpler.
Now, by addition rule of tangent of angles, i.e. $\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A.\tan B}$ solve the expression $\tan {{\left( 20+50 \right)}^{\circ }}$.Then check if you can convert any angles into cotangent and cancel out the terms to get the final expression $\tan {{70}^{\circ }}=\tan {{20}^{\circ }}+2\tan {{50}^{\circ }}$.
Complete step by step answer:
We have the following expression: $\tan {{70}^{\circ }}......(1)$
We can write equation (1) as:
$\tan {{70}^{\circ }}=\tan {{\left( 20+50 \right)}^{\circ }}......(2)$
Now, by using addition rule of tangent of angles, i.e. $\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A.\tan B}$ for equation (2), we get:
$\tan {{70}^{\circ }}=\dfrac{\tan {{20}^{\circ }}+\tan {{50}^{\circ }}}{1-\tan {{20}^{\circ }}.\tan {{50}^{\circ }}}......(3)$
We can also write equation (3) as:
\[\tan {{70}^{\circ }}\left( 1-\tan {{20}^{\circ }}.\tan {{50}^{\circ }} \right)=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}......(4)\]
Now, expand equation (4), we get:
\[\left( \tan {{70}^{\circ }}-\tan {{20}^{\circ }}.\tan {{50}^{\circ }}\tan {{70}^{\circ }} \right)=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}......(5)\]
We can write equation (5) as:
\[\tan {{70}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}+\tan {{20}^{\circ }}.\tan {{50}^{\circ }}\tan {{70}^{\circ }}......(6)\]
We can write $\tan {{20}^{\circ }}=\tan {{\left( 90-70 \right)}^{\circ }}$
We get:
\[\tan {{70}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}+\tan {{\left( 90-70 \right)}^{\circ }}.\tan {{50}^{\circ }}\tan {{70}^{\circ }}......(7)\]
We know that $\tan \left( 90-\theta \right)=\cot \theta $
So, we get:
\[\tan {{70}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}+\cot {{70}^{\circ }}.\tan {{50}^{\circ }}\tan {{70}^{\circ }}......(8)\]
Also, we know that: $\tan \theta .\cot \theta =1$
So, we get:
\[\begin{align}
& \Rightarrow \tan {{70}^{\circ }}=\tan {{20}^{\circ }}+\tan {{50}^{\circ }}+\tan {{50}^{\circ }} \\
& \Rightarrow \tan {{70}^{\circ }}=\tan {{20}^{\circ }}+2\tan {{50}^{\circ }} \\
\end{align}\]
Hence proved that $\tan {{70}^{\circ }}=\tan {{20}^{\circ }}+2\tan {{50}^{\circ }}$.
Note:
Always remember that, whenever we are given to solve an expression having tangent of angles, try to solve it by addition rule for tangent of angles, i.e. $\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A.\tan B}$ or subtraction rule of tangent of angles, i.e. $\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A.\tan B}$ . Also, we can turn angles into cotangent and cancel out the terms to make the expression simpler.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
The non protein part of an enzyme is a A Prosthetic class 11 biology CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

What is a zygomorphic flower Give example class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

The deoxygenated blood from the hind limbs of the frog class 11 biology CBSE

What is the function of copulatory pads in the forelimbs class 11 biology CBSE
