
Prove that $\tan 70^\circ = 2\tan 50^\circ + \tan 20^\circ $
Answer
577.8k+ views
Hint: As we know that for $\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
So we can write that $\tan 70^\circ = \tan (50^\circ + 20^\circ )$
Now you can easily expand using the given formula and can prove the above equation.
Complete step-by-step answer:
As we need to prove that
$\tan 70^\circ = 2\tan 50^\circ + \tan 20^\circ $
Now we have $\tan 70^\circ $ in LHS. So as we know the formula of $\tan (A + B)$ which is
$\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
So first thing which we are seeing that in the LHS we have $\tan 70^\circ $ and we need to split it in $\tan 20^\circ {\text{ and }}\tan 50^\circ $ as
$\tan 70^\circ = \tan (50^\circ + 20^\circ )$
Now we can use $\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
So we get $\tan 70^\circ = \dfrac{{\tan 20^\circ + \tan 50^\circ }}{{1 - \tan 20^\circ \tan 50^\circ }}$
Upon further simplification, we get that
$\Rightarrow$$\tan 70^\circ - \tan 70^\circ \tan 20^\circ \tan 50^\circ = \tan 20^\circ + \tan 50^\circ $
Now we can write it as
$\Rightarrow$$\tan 70^\circ = \tan 20^\circ + \tan 50^\circ + \tan 70^\circ \tan 20^\circ \tan 50^\circ $$ - - - - - (1)$
Also we know that $\tan (90 - \theta ) = \cot \theta $
$\tan \theta = \dfrac{1}{{\cot \theta }}$
So we can cross multiply
$\tan \theta \cot \theta = 1$
So we can write that
$
\Rightarrow \tan 70^\circ = \tan (90^\circ - 20^\circ ) \\
{\text{ }} = \cot 20^\circ
$
Now we put this value in equation (1)
$\Rightarrow$$\tan 70^\circ = \tan 20^\circ + \tan 50^\circ + \cot 20^\circ \tan 20^\circ \tan 50^\circ $
So as $\tan \theta \cot \theta = 1$
We can write that
$\Rightarrow$$\tan 20^\circ \cot 20^\circ = 1$
We get that
$\Rightarrow$$\tan 70^\circ = \tan 20^\circ + \tan 50^\circ + \tan 50^\circ $
$\Rightarrow$$\tan 70^\circ = \tan 20^\circ + 2\tan 50^\circ $
Hence proved.
Note: We should know the following conversions like
$
\sin (90 \pm \theta ) = \cos \theta ;\sin \theta {\text{cosec}}\theta = 1 \\
{\text{cosec}}(90 \pm \theta ) = \sec \theta ;\cos \theta \sec \theta = 1 \\
\tan (90 \pm \theta ) = \cot \theta ;\tan \theta \cot \theta = 1 \\
$
So we can write that $\tan 70^\circ = \tan (50^\circ + 20^\circ )$
Now you can easily expand using the given formula and can prove the above equation.
Complete step-by-step answer:
As we need to prove that
$\tan 70^\circ = 2\tan 50^\circ + \tan 20^\circ $
Now we have $\tan 70^\circ $ in LHS. So as we know the formula of $\tan (A + B)$ which is
$\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
So first thing which we are seeing that in the LHS we have $\tan 70^\circ $ and we need to split it in $\tan 20^\circ {\text{ and }}\tan 50^\circ $ as
$\tan 70^\circ = \tan (50^\circ + 20^\circ )$
Now we can use $\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$
So we get $\tan 70^\circ = \dfrac{{\tan 20^\circ + \tan 50^\circ }}{{1 - \tan 20^\circ \tan 50^\circ }}$
Upon further simplification, we get that
$\Rightarrow$$\tan 70^\circ - \tan 70^\circ \tan 20^\circ \tan 50^\circ = \tan 20^\circ + \tan 50^\circ $
Now we can write it as
$\Rightarrow$$\tan 70^\circ = \tan 20^\circ + \tan 50^\circ + \tan 70^\circ \tan 20^\circ \tan 50^\circ $$ - - - - - (1)$
Also we know that $\tan (90 - \theta ) = \cot \theta $
$\tan \theta = \dfrac{1}{{\cot \theta }}$
So we can cross multiply
$\tan \theta \cot \theta = 1$
So we can write that
$
\Rightarrow \tan 70^\circ = \tan (90^\circ - 20^\circ ) \\
{\text{ }} = \cot 20^\circ
$
Now we put this value in equation (1)
$\Rightarrow$$\tan 70^\circ = \tan 20^\circ + \tan 50^\circ + \cot 20^\circ \tan 20^\circ \tan 50^\circ $
So as $\tan \theta \cot \theta = 1$
We can write that
$\Rightarrow$$\tan 20^\circ \cot 20^\circ = 1$
We get that
$\Rightarrow$$\tan 70^\circ = \tan 20^\circ + \tan 50^\circ + \tan 50^\circ $
$\Rightarrow$$\tan 70^\circ = \tan 20^\circ + 2\tan 50^\circ $
Hence proved.
Note: We should know the following conversions like
$
\sin (90 \pm \theta ) = \cos \theta ;\sin \theta {\text{cosec}}\theta = 1 \\
{\text{cosec}}(90 \pm \theta ) = \sec \theta ;\cos \theta \sec \theta = 1 \\
\tan (90 \pm \theta ) = \cot \theta ;\tan \theta \cot \theta = 1 \\
$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

