
Prove that $ \sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{60}^{\circ }}\sin {{80}^{\circ }}=\dfrac{3}{16} $ .
Answer
519k+ views
Hint: We first try to break the multiplication into two parts. We find the multiplication of $ \sin {{40}^{\circ }}\sin {{80}^{\circ }} $ with the help of $ 2\sin A\sin B=\cos \left( A-B \right)-\cos \left( A+B \right) $ . Then we complete the other multiplication part to get to the solution.
Complete step-by-step answer:
We first try to put the values for $ \sin {{60}^{\circ }} $ in $ \sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{60}^{\circ }}\sin {{80}^{\circ }} $ .
We know that \[\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}\].
Therefore, \[\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{60}^{\circ }}\sin {{80}^{\circ }}=\left( \dfrac{\sqrt{3}}{2}\sin {{20}^{\circ }} \right)\left( \sin {{40}^{\circ }}\sin {{80}^{\circ }} \right)\]
We have multiplication of three trigonometric ratios. We multiply them separately.
We have the identity theorem where $ 2\sin A\sin B=\cos \left( A-B \right)-\cos \left( A+B \right) $ .
For our given multiplication of \[\left( \sin {{40}^{\circ }}\sin {{80}^{\circ }} \right)\], we first take \[\dfrac{1}{2}\left( 2\sin {{40}^{\circ }}\sin {{80}^{\circ }} \right)\].
We take \[\dfrac{1}{2}\left( 2\sin {{40}^{\circ }}\sin {{80}^{\circ }} \right)=\cos \left( {{80}^{\circ }}-{{40}^{\circ }} \right)-\cos \left( {{80}^{\circ }}+{{40}^{\circ }} \right)=\cos {{40}^{\circ }}-\cos {{120}^{\circ }}\].
Now we have to find the value of $ \cos {{120}^{\circ }} $ .
For general form of $ \cos \left( x \right) $ , we need to convert the value of x into the closest multiple of $ \dfrac{\pi }{2} $ and add or subtract a certain value $ \alpha $ from that multiple of $ \dfrac{\pi }{2} $ to make it equal to x.
Let’s assume $ x=k\times \dfrac{\pi }{2}+\alpha $ , $ k\in \mathbb{Z} $ . Here we took addition of $ \alpha $ . We also need to remember that $ \left| \alpha \right|\le \dfrac{\pi }{2} $ .
Now we take the value of k. If it’s even then keep the ratio as cos and if it’s odd then the ratio changes to sin ratio from cos.
Then we find the position of the given angle as quadrant value measured in counter clockwise movement from the origin and the positive side of X-axis.
If the angle falls in the first or fourth quadrant then the sign remains positive but if it falls in the second or third quadrant then the sign becomes negative.
The final form becomes $ \cos {{120}^{\circ }}=\cos \left( 1\times \dfrac{\pi }{2}+30 \right)=-\sin \left( 30 \right)=-\dfrac{1}{2} $ .
So, \[\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{60}^{\circ }}\sin {{80}^{\circ }}=\left( \dfrac{\sqrt{3}}{4}\sin {{20}^{\circ }} \right)\left( \cos {{40}^{\circ }}+\dfrac{1}{2} \right)\].
Again, \[\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{60}^{\circ }}\sin {{80}^{\circ }}=\dfrac{\sqrt{3}}{4}\left( \sin {{20}^{\circ }}\cos {{40}^{\circ }}+\dfrac{1}{2}\sin {{20}^{\circ }} \right)\].
So, \[\sin {{20}^{\circ }}\cos {{40}^{\circ }}=\dfrac{1}{2}\left( 2\sin {{20}^{\circ }}\cos {{40}^{\circ }} \right)=\dfrac{1}{2}\left( \sin {{60}^{\circ }}-\sin {{20}^{\circ }} \right)=\dfrac{1}{2}\left( \dfrac{\sqrt{3}}{2}-\sin {{20}^{\circ }} \right)\]
We have
\[\begin{align}
& \sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{60}^{\circ }}\sin {{80}^{\circ }} \\
& =\dfrac{\sqrt{3}}{4}\left( \sin {{20}^{\circ }}\cos {{40}^{\circ }}+\dfrac{1}{2}\sin {{20}^{\circ }} \right) \\
& =\dfrac{\sqrt{3}}{4}\left( \dfrac{\sqrt{3}}{4}-\dfrac{1}{2}\sin {{20}^{\circ }}+\dfrac{1}{2}\sin {{20}^{\circ }} \right) \\
& =\dfrac{3}{16} \\
\end{align}\].
Thus proved, $ \sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{60}^{\circ }}\sin {{80}^{\circ }}=\dfrac{3}{16} $ .
Note: We also used the formula of $ 2\cos A\sin B=\sin \left( A+B \right)-\sin \left( A-B \right) $ for \[\sin {{20}^{\circ }}\cos {{40}^{\circ }}\]. We have to be careful about the choosing of similar trigonometric ratios.
Complete step-by-step answer:
We first try to put the values for $ \sin {{60}^{\circ }} $ in $ \sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{60}^{\circ }}\sin {{80}^{\circ }} $ .
We know that \[\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}\].
Therefore, \[\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{60}^{\circ }}\sin {{80}^{\circ }}=\left( \dfrac{\sqrt{3}}{2}\sin {{20}^{\circ }} \right)\left( \sin {{40}^{\circ }}\sin {{80}^{\circ }} \right)\]
We have multiplication of three trigonometric ratios. We multiply them separately.
We have the identity theorem where $ 2\sin A\sin B=\cos \left( A-B \right)-\cos \left( A+B \right) $ .
For our given multiplication of \[\left( \sin {{40}^{\circ }}\sin {{80}^{\circ }} \right)\], we first take \[\dfrac{1}{2}\left( 2\sin {{40}^{\circ }}\sin {{80}^{\circ }} \right)\].
We take \[\dfrac{1}{2}\left( 2\sin {{40}^{\circ }}\sin {{80}^{\circ }} \right)=\cos \left( {{80}^{\circ }}-{{40}^{\circ }} \right)-\cos \left( {{80}^{\circ }}+{{40}^{\circ }} \right)=\cos {{40}^{\circ }}-\cos {{120}^{\circ }}\].
Now we have to find the value of $ \cos {{120}^{\circ }} $ .
For general form of $ \cos \left( x \right) $ , we need to convert the value of x into the closest multiple of $ \dfrac{\pi }{2} $ and add or subtract a certain value $ \alpha $ from that multiple of $ \dfrac{\pi }{2} $ to make it equal to x.
Let’s assume $ x=k\times \dfrac{\pi }{2}+\alpha $ , $ k\in \mathbb{Z} $ . Here we took addition of $ \alpha $ . We also need to remember that $ \left| \alpha \right|\le \dfrac{\pi }{2} $ .
Now we take the value of k. If it’s even then keep the ratio as cos and if it’s odd then the ratio changes to sin ratio from cos.
Then we find the position of the given angle as quadrant value measured in counter clockwise movement from the origin and the positive side of X-axis.
If the angle falls in the first or fourth quadrant then the sign remains positive but if it falls in the second or third quadrant then the sign becomes negative.
The final form becomes $ \cos {{120}^{\circ }}=\cos \left( 1\times \dfrac{\pi }{2}+30 \right)=-\sin \left( 30 \right)=-\dfrac{1}{2} $ .
So, \[\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{60}^{\circ }}\sin {{80}^{\circ }}=\left( \dfrac{\sqrt{3}}{4}\sin {{20}^{\circ }} \right)\left( \cos {{40}^{\circ }}+\dfrac{1}{2} \right)\].
Again, \[\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{60}^{\circ }}\sin {{80}^{\circ }}=\dfrac{\sqrt{3}}{4}\left( \sin {{20}^{\circ }}\cos {{40}^{\circ }}+\dfrac{1}{2}\sin {{20}^{\circ }} \right)\].
So, \[\sin {{20}^{\circ }}\cos {{40}^{\circ }}=\dfrac{1}{2}\left( 2\sin {{20}^{\circ }}\cos {{40}^{\circ }} \right)=\dfrac{1}{2}\left( \sin {{60}^{\circ }}-\sin {{20}^{\circ }} \right)=\dfrac{1}{2}\left( \dfrac{\sqrt{3}}{2}-\sin {{20}^{\circ }} \right)\]
We have
\[\begin{align}
& \sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{60}^{\circ }}\sin {{80}^{\circ }} \\
& =\dfrac{\sqrt{3}}{4}\left( \sin {{20}^{\circ }}\cos {{40}^{\circ }}+\dfrac{1}{2}\sin {{20}^{\circ }} \right) \\
& =\dfrac{\sqrt{3}}{4}\left( \dfrac{\sqrt{3}}{4}-\dfrac{1}{2}\sin {{20}^{\circ }}+\dfrac{1}{2}\sin {{20}^{\circ }} \right) \\
& =\dfrac{3}{16} \\
\end{align}\].
Thus proved, $ \sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{60}^{\circ }}\sin {{80}^{\circ }}=\dfrac{3}{16} $ .
Note: We also used the formula of $ 2\cos A\sin B=\sin \left( A+B \right)-\sin \left( A-B \right) $ for \[\sin {{20}^{\circ }}\cos {{40}^{\circ }}\]. We have to be careful about the choosing of similar trigonometric ratios.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

