
Prove that \[{{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}\] for \[\left| x \right|\le 1\].
Answer
551.7k+ views
Hint: We prove this equation by using the sine to cosine transformation that is \[sin\theta =\cos \left( \dfrac{\pi }{2}-\theta \right)\] or \[\cos \theta =\sin \left( \dfrac{\pi }{2}-\theta \right)\] where \[\theta \]\[\le \]\[\dfrac{\pi }{2}\] or there will be alternative method also to proof this basic inverse trigonometric identity which uses the eleventh class trigonometric equation which is given by: \[\cos (A-B)\] \[=\] \[\cos A\]\[\cos B\sin A\sin B\]
Complete step by step solution:
Let us take \[x=\sin \theta \]\[=\cos \left( \dfrac{\pi }{2}-\theta \right)\]\[\Rightarrow \] \[{{\sin }^{-1}}x=\theta \]
And \[{{\cos }^{-1}}x=\dfrac{\pi }{2}-\theta \]
Now we will substitute the equation \[{{\sin }^{-1}}x=\theta \] into \[{{\cos }^{-1}}x=\dfrac{\pi }{2}-\theta \]
We get, \[{{\cos }^{-1}}x\]\[=\dfrac{\pi }{2}\]\[-\]\[{{\sin }^{-1}}x\]
\[\Rightarrow \]\[{{\cos }^{-1}}x\]\[+\]\[{{\sin }^{-1}}x\]=\[\dfrac{\pi }{2}\]
So, it’s proving that\[{{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}\].
Here, \[\theta \]\[\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]\] this implies that \[x\in \left[ -1,1 \right]\]
Therefore, it is valid only for\[\left| x \right|\le 1\].
Hence Proved.
Note: Alternative Method:
This can be proved by using the formula \[\cos (A-B)=\cos A\cos B\sin A\sin B\] where \[A=\dfrac{\pi }{2}\] and \[B=\theta \]
On putting \[A=\dfrac{\pi }{2}\]and \[B=\theta \]
We get, \[\cos (\dfrac{\pi }{2}-\theta )\]=\[\cos \dfrac{\pi }{2}\]\[\cos \theta \]\[+\]\[\sin \dfrac{\pi }{2}\]\[\sin \theta \]= \[0\]\[\times \]\[\cos \theta \]\[+\]\[1\]\[\times \]\[\sin \theta \]
\[\Rightarrow \]\[\sin \theta \]
Now, again follow the same steps by taking the \[\sin \theta \] is equal to x and then use the trigonometric transform identities and then substitute the value of x into any transform identities then this inverse trigonometric basic identity will be obtained.
Complete step by step solution:
Let us take \[x=\sin \theta \]\[=\cos \left( \dfrac{\pi }{2}-\theta \right)\]\[\Rightarrow \] \[{{\sin }^{-1}}x=\theta \]
And \[{{\cos }^{-1}}x=\dfrac{\pi }{2}-\theta \]
Now we will substitute the equation \[{{\sin }^{-1}}x=\theta \] into \[{{\cos }^{-1}}x=\dfrac{\pi }{2}-\theta \]
We get, \[{{\cos }^{-1}}x\]\[=\dfrac{\pi }{2}\]\[-\]\[{{\sin }^{-1}}x\]
\[\Rightarrow \]\[{{\cos }^{-1}}x\]\[+\]\[{{\sin }^{-1}}x\]=\[\dfrac{\pi }{2}\]
So, it’s proving that\[{{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}\].
Here, \[\theta \]\[\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]\] this implies that \[x\in \left[ -1,1 \right]\]
Therefore, it is valid only for\[\left| x \right|\le 1\].
Hence Proved.
Note: Alternative Method:
This can be proved by using the formula \[\cos (A-B)=\cos A\cos B\sin A\sin B\] where \[A=\dfrac{\pi }{2}\] and \[B=\theta \]
On putting \[A=\dfrac{\pi }{2}\]and \[B=\theta \]
We get, \[\cos (\dfrac{\pi }{2}-\theta )\]=\[\cos \dfrac{\pi }{2}\]\[\cos \theta \]\[+\]\[\sin \dfrac{\pi }{2}\]\[\sin \theta \]= \[0\]\[\times \]\[\cos \theta \]\[+\]\[1\]\[\times \]\[\sin \theta \]
\[\Rightarrow \]\[\sin \theta \]
Now, again follow the same steps by taking the \[\sin \theta \] is equal to x and then use the trigonometric transform identities and then substitute the value of x into any transform identities then this inverse trigonometric basic identity will be obtained.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

