
Prove that \[{{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}\] for \[\left| x \right|\le 1\].
Answer
537.6k+ views
Hint: We prove this equation by using the sine to cosine transformation that is \[sin\theta =\cos \left( \dfrac{\pi }{2}-\theta \right)\] or \[\cos \theta =\sin \left( \dfrac{\pi }{2}-\theta \right)\] where \[\theta \]\[\le \]\[\dfrac{\pi }{2}\] or there will be alternative method also to proof this basic inverse trigonometric identity which uses the eleventh class trigonometric equation which is given by: \[\cos (A-B)\] \[=\] \[\cos A\]\[\cos B\sin A\sin B\]
Complete step by step solution:
Let us take \[x=\sin \theta \]\[=\cos \left( \dfrac{\pi }{2}-\theta \right)\]\[\Rightarrow \] \[{{\sin }^{-1}}x=\theta \]
And \[{{\cos }^{-1}}x=\dfrac{\pi }{2}-\theta \]
Now we will substitute the equation \[{{\sin }^{-1}}x=\theta \] into \[{{\cos }^{-1}}x=\dfrac{\pi }{2}-\theta \]
We get, \[{{\cos }^{-1}}x\]\[=\dfrac{\pi }{2}\]\[-\]\[{{\sin }^{-1}}x\]
\[\Rightarrow \]\[{{\cos }^{-1}}x\]\[+\]\[{{\sin }^{-1}}x\]=\[\dfrac{\pi }{2}\]
So, it’s proving that\[{{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}\].
Here, \[\theta \]\[\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]\] this implies that \[x\in \left[ -1,1 \right]\]
Therefore, it is valid only for\[\left| x \right|\le 1\].
Hence Proved.
Note: Alternative Method:
This can be proved by using the formula \[\cos (A-B)=\cos A\cos B\sin A\sin B\] where \[A=\dfrac{\pi }{2}\] and \[B=\theta \]
On putting \[A=\dfrac{\pi }{2}\]and \[B=\theta \]
We get, \[\cos (\dfrac{\pi }{2}-\theta )\]=\[\cos \dfrac{\pi }{2}\]\[\cos \theta \]\[+\]\[\sin \dfrac{\pi }{2}\]\[\sin \theta \]= \[0\]\[\times \]\[\cos \theta \]\[+\]\[1\]\[\times \]\[\sin \theta \]
\[\Rightarrow \]\[\sin \theta \]
Now, again follow the same steps by taking the \[\sin \theta \] is equal to x and then use the trigonometric transform identities and then substitute the value of x into any transform identities then this inverse trigonometric basic identity will be obtained.
Complete step by step solution:
Let us take \[x=\sin \theta \]\[=\cos \left( \dfrac{\pi }{2}-\theta \right)\]\[\Rightarrow \] \[{{\sin }^{-1}}x=\theta \]
And \[{{\cos }^{-1}}x=\dfrac{\pi }{2}-\theta \]
Now we will substitute the equation \[{{\sin }^{-1}}x=\theta \] into \[{{\cos }^{-1}}x=\dfrac{\pi }{2}-\theta \]
We get, \[{{\cos }^{-1}}x\]\[=\dfrac{\pi }{2}\]\[-\]\[{{\sin }^{-1}}x\]
\[\Rightarrow \]\[{{\cos }^{-1}}x\]\[+\]\[{{\sin }^{-1}}x\]=\[\dfrac{\pi }{2}\]
So, it’s proving that\[{{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}\].
Here, \[\theta \]\[\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]\] this implies that \[x\in \left[ -1,1 \right]\]
Therefore, it is valid only for\[\left| x \right|\le 1\].
Hence Proved.
Note: Alternative Method:
This can be proved by using the formula \[\cos (A-B)=\cos A\cos B\sin A\sin B\] where \[A=\dfrac{\pi }{2}\] and \[B=\theta \]
On putting \[A=\dfrac{\pi }{2}\]and \[B=\theta \]
We get, \[\cos (\dfrac{\pi }{2}-\theta )\]=\[\cos \dfrac{\pi }{2}\]\[\cos \theta \]\[+\]\[\sin \dfrac{\pi }{2}\]\[\sin \theta \]= \[0\]\[\times \]\[\cos \theta \]\[+\]\[1\]\[\times \]\[\sin \theta \]
\[\Rightarrow \]\[\sin \theta \]
Now, again follow the same steps by taking the \[\sin \theta \] is equal to x and then use the trigonometric transform identities and then substitute the value of x into any transform identities then this inverse trigonometric basic identity will be obtained.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

