
Prove that \[\left( {\overrightarrow p - \overrightarrow q } \right).\left[ {\left( {\overrightarrow q - \overrightarrow r } \right) \times \left( {\overrightarrow r - \overrightarrow p } \right)} \right] = 0\]
Answer
584.4k+ views
Hint:First we will let the given three vectors to be \[\overrightarrow a ,\overrightarrow b ,\overrightarrow c \] respectively and then add them.
According to the result so obtained we will prove the given equation.
If three vectors are coplanar then the volume of parallelepiped is equal to zero.
Complete step-by-step answer:
First we will consider the left hand side of the equation to be proved:
\[LHS = \left( {\overrightarrow p - \overrightarrow q } \right).\left[ {\left( {\overrightarrow q - \overrightarrow r } \right) \times \left( {\overrightarrow r - \overrightarrow p } \right)} \right]\]
Now let
\[
\overrightarrow p - \overrightarrow q = \overrightarrow a ....................\left( 1 \right) \\
\overrightarrow q - \overrightarrow r = \overrightarrow b .....................\left( 2 \right) \\
\overrightarrow r - \overrightarrow p = \overrightarrow c ......................\left( 3 \right) \\
\]
Now on adding equations 1, 2 and 3 we get:-
\[
\overrightarrow a + \overrightarrow b + \overrightarrow c = \left( {\overrightarrow p - \overrightarrow q } \right) + \left( {\overrightarrow q - \overrightarrow r } \right) + \left( {\overrightarrow r - \overrightarrow p } \right) \\
\overrightarrow a + \overrightarrow b + \overrightarrow c = \left( {\overrightarrow p - \overrightarrow p } \right) + \left( {\overrightarrow q - \overrightarrow q } \right) + \left( {\overrightarrow r - \overrightarrow r } \right) \\
\overrightarrow a + \overrightarrow b + \overrightarrow c = 0 \\
\]
Now since the sum of the vectors is zero
Therefore, these vectors are co-planar.
This implies that the volume of parallelepiped having vectors \[\overrightarrow a ,\overrightarrow b ,\overrightarrow c \] as its edges is zero.
Now since the volume of the parallelepiped is given by the scalar triple product of three vectors
Hence,
\[\left[ {\overrightarrow a {\text{ }}\overrightarrow b {\text{ }}\overrightarrow c } \right] = 0\]
Now since scalar triple product is given by:-
\[\left[ {\overrightarrow a {\text{ }}\overrightarrow b {\text{ }}\overrightarrow c } \right] = \overrightarrow a .\left( {\overrightarrow b \times \overrightarrow c } \right)\]
Therefore,
\[\overrightarrow a .\left( {\overrightarrow b \times \overrightarrow c } \right) = 0\]
Now putting back the values from equations 1 ,2 and 3 we get:-
\[\left( {\overrightarrow p - \overrightarrow q } \right).\left[ {\left( {\overrightarrow q - \overrightarrow r } \right) \times \left( {\overrightarrow r - \overrightarrow p } \right)} \right] = 0\]
Therefore,
\[LHS = RHS\]
Hence proved.
Note:When three vectors are co- planar then their scalar triple product as well as the volume of the parallelepiped is always zero.
Scalar triple product can also be written as:
\[
\left[ {\overrightarrow a {\text{ }}\overrightarrow b {\text{ }}\overrightarrow c } \right] = \overrightarrow a .\left( {\overrightarrow b \times \overrightarrow c } \right) \\
\overrightarrow a .\left( {\overrightarrow b \times \overrightarrow c } \right) = \left( {\overrightarrow a .\overrightarrow b } \right) \times \left( {\overrightarrow a .\overrightarrow c } \right) \\
\]
According to the result so obtained we will prove the given equation.
If three vectors are coplanar then the volume of parallelepiped is equal to zero.
Complete step-by-step answer:
First we will consider the left hand side of the equation to be proved:
\[LHS = \left( {\overrightarrow p - \overrightarrow q } \right).\left[ {\left( {\overrightarrow q - \overrightarrow r } \right) \times \left( {\overrightarrow r - \overrightarrow p } \right)} \right]\]
Now let
\[
\overrightarrow p - \overrightarrow q = \overrightarrow a ....................\left( 1 \right) \\
\overrightarrow q - \overrightarrow r = \overrightarrow b .....................\left( 2 \right) \\
\overrightarrow r - \overrightarrow p = \overrightarrow c ......................\left( 3 \right) \\
\]
Now on adding equations 1, 2 and 3 we get:-
\[
\overrightarrow a + \overrightarrow b + \overrightarrow c = \left( {\overrightarrow p - \overrightarrow q } \right) + \left( {\overrightarrow q - \overrightarrow r } \right) + \left( {\overrightarrow r - \overrightarrow p } \right) \\
\overrightarrow a + \overrightarrow b + \overrightarrow c = \left( {\overrightarrow p - \overrightarrow p } \right) + \left( {\overrightarrow q - \overrightarrow q } \right) + \left( {\overrightarrow r - \overrightarrow r } \right) \\
\overrightarrow a + \overrightarrow b + \overrightarrow c = 0 \\
\]
Now since the sum of the vectors is zero
Therefore, these vectors are co-planar.
This implies that the volume of parallelepiped having vectors \[\overrightarrow a ,\overrightarrow b ,\overrightarrow c \] as its edges is zero.
Now since the volume of the parallelepiped is given by the scalar triple product of three vectors
Hence,
\[\left[ {\overrightarrow a {\text{ }}\overrightarrow b {\text{ }}\overrightarrow c } \right] = 0\]
Now since scalar triple product is given by:-
\[\left[ {\overrightarrow a {\text{ }}\overrightarrow b {\text{ }}\overrightarrow c } \right] = \overrightarrow a .\left( {\overrightarrow b \times \overrightarrow c } \right)\]
Therefore,
\[\overrightarrow a .\left( {\overrightarrow b \times \overrightarrow c } \right) = 0\]
Now putting back the values from equations 1 ,2 and 3 we get:-
\[\left( {\overrightarrow p - \overrightarrow q } \right).\left[ {\left( {\overrightarrow q - \overrightarrow r } \right) \times \left( {\overrightarrow r - \overrightarrow p } \right)} \right] = 0\]
Therefore,
\[LHS = RHS\]
Hence proved.
Note:When three vectors are co- planar then their scalar triple product as well as the volume of the parallelepiped is always zero.
Scalar triple product can also be written as:
\[
\left[ {\overrightarrow a {\text{ }}\overrightarrow b {\text{ }}\overrightarrow c } \right] = \overrightarrow a .\left( {\overrightarrow b \times \overrightarrow c } \right) \\
\overrightarrow a .\left( {\overrightarrow b \times \overrightarrow c } \right) = \left( {\overrightarrow a .\overrightarrow b } \right) \times \left( {\overrightarrow a .\overrightarrow c } \right) \\
\]
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

