
Prove that $\int\limits_0^a {f\left( x \right)dx} = \int\limits_0^a {f\left( {a - x} \right)dx} $ and hence evaluate $\int\limits_0^a {\dfrac{{\sqrt x }}{{\sqrt x + \sqrt {a - x} }}dx} $.
Answer
584.1k+ views
Hint: We begin by letting $x = a - t$ and the corresponding value of limits. Substitute these values in LHS of the given expression. Apply rules of integration and prove it equal to RHS. Then, let $I = \int\limits_0^a {\dfrac{{\sqrt x }}{{\sqrt x + \sqrt {a - x} }}dx} $. Replace $x$ by $x - a$ and find the value of corresponding integration. Add both the integrations to get a simplified expression. Apply the formula of integration and then put limits to get the required answer.
Complete step-by-step answer:
We have to prove $\int\limits_0^a {f\left( x \right)dx} = \int\limits_0^a {f\left( {a - x} \right)dx} $
Let $x = a - t$
Then, differentiate both sides,
$dx = - dt$
When $x = 0$, then the value of $t$ is
$
0 = a - t \\
\Rightarrow t = a \\
$
And when $x = a$, then the value of $t$ is
$
a = a - t \\
\Rightarrow t = 0 \\
$
Substituting the values in LHS of the expression.
\[\int\limits_0^a {f\left( x \right)dx} = \int\limits_a^0 {f\left( {a - t} \right)\left( { - dt} \right)} = - \int\limits_a^0 {f\left( {a - t} \right)\left( {dt} \right)} \]
We can interchange the limits by multiplying a negative sign.
\[\int\limits_0^a {f\left( {a - t} \right)\left( {dt} \right)} \]
On substituting back the value of $t = x$, we will get,
\[\int\limits_0^a {f\left( {a - x} \right)\left( {dt} \right)} \], which is equal to RHS.
Now, we have to find the value of $\int\limits_0^a {\dfrac{{\sqrt x }}{{\sqrt x + \sqrt {a - x} }}dx} $
Let $I = \int\limits_0^a {\dfrac{{\sqrt x }}{{\sqrt x + \sqrt {a - x} }}dx} $ eqn. (1)
Replace $x$ by $x - a$ in the above equation, as $\int\limits_0^a {f\left( x \right)dx} = \int\limits_0^a {f\left( {a - x} \right)dx} $
$I = \int\limits_0^a {\dfrac{{\sqrt {a - x} }}{{\sqrt {a - x} + \sqrt {a - \left( {a - x} \right)} }}dx} $
$ \Rightarrow I = \int\limits_0^a {\dfrac{{\sqrt {a - x} }}{{\sqrt {a - x} + \sqrt x }}dx} $ eqn.(2)
Adding equation (1) and (2),
$
2I = \int\limits_0^a {\dfrac{{\sqrt x }}{{\sqrt x + \sqrt {a - x} }}dx} + \int\limits_0^a {\dfrac{{\sqrt {a - x} }}{{\sqrt {a - x} + \sqrt x }}dx} \\
\Rightarrow 2I = \int\limits_0^a {\dfrac{{\sqrt x + \sqrt {a - x} }}{{\sqrt x + \sqrt {a - x} }}dx} \\
\Rightarrow 2I = \int\limits_0^a {dx} \\
$
Now, \[\int {dx = x} \]
\[2I = \left[ x \right]_0^a\]
We will put the limits and divide the equation by 2.
$
2I = \left( {a - 0} \right) \\
\Rightarrow 2I = a \\
\Rightarrow I = \dfrac{a}{2} \\
$
Hence, the value of $\int\limits_0^a {\dfrac{{\sqrt x }}{{\sqrt x + \sqrt {a - x} }}dx} $ is $\dfrac{a}{2}$.
Note: Students must know the basic rules of integration, how to change limits and formulas of integration to do these types of questions. Also, we have to find the value of $\int\limits_0^a {\dfrac{{\sqrt x }}{{\sqrt x + \sqrt {a - x} }}dx} $ using the property proved in previous step. While applying the limits, we apply the upper limit first and then subtract the value of lower limit from it.
Complete step-by-step answer:
We have to prove $\int\limits_0^a {f\left( x \right)dx} = \int\limits_0^a {f\left( {a - x} \right)dx} $
Let $x = a - t$
Then, differentiate both sides,
$dx = - dt$
When $x = 0$, then the value of $t$ is
$
0 = a - t \\
\Rightarrow t = a \\
$
And when $x = a$, then the value of $t$ is
$
a = a - t \\
\Rightarrow t = 0 \\
$
Substituting the values in LHS of the expression.
\[\int\limits_0^a {f\left( x \right)dx} = \int\limits_a^0 {f\left( {a - t} \right)\left( { - dt} \right)} = - \int\limits_a^0 {f\left( {a - t} \right)\left( {dt} \right)} \]
We can interchange the limits by multiplying a negative sign.
\[\int\limits_0^a {f\left( {a - t} \right)\left( {dt} \right)} \]
On substituting back the value of $t = x$, we will get,
\[\int\limits_0^a {f\left( {a - x} \right)\left( {dt} \right)} \], which is equal to RHS.
Now, we have to find the value of $\int\limits_0^a {\dfrac{{\sqrt x }}{{\sqrt x + \sqrt {a - x} }}dx} $
Let $I = \int\limits_0^a {\dfrac{{\sqrt x }}{{\sqrt x + \sqrt {a - x} }}dx} $ eqn. (1)
Replace $x$ by $x - a$ in the above equation, as $\int\limits_0^a {f\left( x \right)dx} = \int\limits_0^a {f\left( {a - x} \right)dx} $
$I = \int\limits_0^a {\dfrac{{\sqrt {a - x} }}{{\sqrt {a - x} + \sqrt {a - \left( {a - x} \right)} }}dx} $
$ \Rightarrow I = \int\limits_0^a {\dfrac{{\sqrt {a - x} }}{{\sqrt {a - x} + \sqrt x }}dx} $ eqn.(2)
Adding equation (1) and (2),
$
2I = \int\limits_0^a {\dfrac{{\sqrt x }}{{\sqrt x + \sqrt {a - x} }}dx} + \int\limits_0^a {\dfrac{{\sqrt {a - x} }}{{\sqrt {a - x} + \sqrt x }}dx} \\
\Rightarrow 2I = \int\limits_0^a {\dfrac{{\sqrt x + \sqrt {a - x} }}{{\sqrt x + \sqrt {a - x} }}dx} \\
\Rightarrow 2I = \int\limits_0^a {dx} \\
$
Now, \[\int {dx = x} \]
\[2I = \left[ x \right]_0^a\]
We will put the limits and divide the equation by 2.
$
2I = \left( {a - 0} \right) \\
\Rightarrow 2I = a \\
\Rightarrow I = \dfrac{a}{2} \\
$
Hence, the value of $\int\limits_0^a {\dfrac{{\sqrt x }}{{\sqrt x + \sqrt {a - x} }}dx} $ is $\dfrac{a}{2}$.
Note: Students must know the basic rules of integration, how to change limits and formulas of integration to do these types of questions. Also, we have to find the value of $\int\limits_0^a {\dfrac{{\sqrt x }}{{\sqrt x + \sqrt {a - x} }}dx} $ using the property proved in previous step. While applying the limits, we apply the upper limit first and then subtract the value of lower limit from it.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

