
Prove that
$\dfrac{\sin 5x+\sin 3x}{\cos 5x+\cos 3x}=\tan 4x$
Answer
597.6k+ views
Hint: Use the fact that $\sin \left( A \right)+\sin \left( B \right)=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$ and $\cos \left( A \right)+\cos \left( B \right)=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$. Hence prove that $\sin 5x+\sin 3x=2\sin 4x\cos x$ and $\cos 5x+\cos 3x=2\cos 4x\cos x$ and hence prove the above identity.
Complete step-by-step answer:
Simplifying the Numerator:
We have
Numerator = sin5x+sin3x
We know that $\sin \left( A \right)+\sin \left( B \right)=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$
Put A = 5x and B = 3x, we get
$\sin 5x+\sin 3x=2\sin \left( \dfrac{5x+3x}{2} \right)\cos \left( \dfrac{5x-3x}{2} \right)=2\sin 4x\cos x$
Hence, we have Numerator = 2sin4xcosx
Simplifying the Denominator:
We have
Denominator = cos5x+cos3x
We know that $\cos \left( A \right)+\cos \left( B \right)=2\cos \dfrac{A+B}{2}\cos \dfrac{A-B}{2}$
Put A = 5x and B = 3x, we get
$\cos 5x+\cos 3x=2\cos \left( \dfrac{5x+3x}{2} \right)\cos \left( \dfrac{5x-3x}{2} \right)=2\cos 4x\cos x$
Hence, we have Denominator = 2cos4xcosx
Hence, we have
$\dfrac{\sin 5x+\sin 3x}{\cos 5x+\cos 3x}=\dfrac{2\sin 4x\cos x}{2\cos 4x\cos x}=\dfrac{\sin 4x}{\cos 4x}$
We know that $\dfrac{\sin x}{\cos x}=\tan x$
Hence, we have
$\dfrac{\sin 4x}{\cos 4x}=\tan 4x$
Hence, we have
$\dfrac{\sin 5x+\sin 3x}{\cos 5x+\cos 3x}=\tan 4x$
Hence, we have L.H.S. = R.H.S.
Q.E.D
Note: Aid to memory:
[i] S+S = 2SC
[ii] S-S = 2CS
[iii] C+C = 2CC
[iv] C-C = -2SS
Each one of the above parts helps to memorise two formula
Like from [ii], we have S-S = 2CS.
Hence, we have $\sin \left( A \right)-\sin \left( B \right)=2\cos \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)$ and $2\cos x\sin y=\sin \left( x+y \right)-\sin \left( x-y \right)$
Hence by memorising the above mnemonic, we can memorise 8 different formulae.
Complete step-by-step answer:
Simplifying the Numerator:
We have
Numerator = sin5x+sin3x
We know that $\sin \left( A \right)+\sin \left( B \right)=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$
Put A = 5x and B = 3x, we get
$\sin 5x+\sin 3x=2\sin \left( \dfrac{5x+3x}{2} \right)\cos \left( \dfrac{5x-3x}{2} \right)=2\sin 4x\cos x$
Hence, we have Numerator = 2sin4xcosx
Simplifying the Denominator:
We have
Denominator = cos5x+cos3x
We know that $\cos \left( A \right)+\cos \left( B \right)=2\cos \dfrac{A+B}{2}\cos \dfrac{A-B}{2}$
Put A = 5x and B = 3x, we get
$\cos 5x+\cos 3x=2\cos \left( \dfrac{5x+3x}{2} \right)\cos \left( \dfrac{5x-3x}{2} \right)=2\cos 4x\cos x$
Hence, we have Denominator = 2cos4xcosx
Hence, we have
$\dfrac{\sin 5x+\sin 3x}{\cos 5x+\cos 3x}=\dfrac{2\sin 4x\cos x}{2\cos 4x\cos x}=\dfrac{\sin 4x}{\cos 4x}$
We know that $\dfrac{\sin x}{\cos x}=\tan x$
Hence, we have
$\dfrac{\sin 4x}{\cos 4x}=\tan 4x$
Hence, we have
$\dfrac{\sin 5x+\sin 3x}{\cos 5x+\cos 3x}=\tan 4x$
Hence, we have L.H.S. = R.H.S.
Q.E.D
Note: Aid to memory:
[i] S+S = 2SC
[ii] S-S = 2CS
[iii] C+C = 2CC
[iv] C-C = -2SS
Each one of the above parts helps to memorise two formula
Like from [ii], we have S-S = 2CS.
Hence, we have $\sin \left( A \right)-\sin \left( B \right)=2\cos \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)$ and $2\cos x\sin y=\sin \left( x+y \right)-\sin \left( x-y \right)$
Hence by memorising the above mnemonic, we can memorise 8 different formulae.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

