
Prove that $\dfrac{\left( 2n \right)!}{n!}={{2}^{n}}\left( 1\times 3\times 5\times \cdots \left( 2n-1 \right) \right)$
Answer
606.9k+ views
Hint: Use the fact that $n!=n\left( n-1 \right)!$. Hence write (2n)! as (2n)(2n-1)(2n-2)…(2)(1)
Now from every even term(2n,2n-2,2n-4,…) take 2 as common. Argue that there will be n such terms. Hence prove that $\left( 2n \right)!={{2}^{n}}\left( 1\times 3\times 5\times \cdots \left( 2n-1 \right) \right)\left( 1\times 2\times \cdots \times n \right)$
Divide both sides by n! and hence prove that $\dfrac{\left( 2n \right)!}{n!}={{2}^{n}}\left( 1\times 3\times 5\times \cdots \times \left( 2n-1 \right) \right)$
Complete step-by-step answer:
We know that $n!=n\left( n-1 \right)!$
Hence, we have $\left( 2n \right)!=2n\left( 2n-1 \right)!$
Continuing this way, we get
$\left( 2n \right)!=2n\left( 2n-1 \right)\left( 2n-2 \right)\cdots \left( 2 \right)\left( 1 \right)$
Writing even terms first and then the odd terms(This can be done since multiplication is both commutative and associative), we get
$\left( 2n \right)!=\left[ \left( 2n \right)\left( 2n-2 \right)\left( 2n-4 \right)\cdots 2 \right]\left[ \left( 2n-1 \right)\left( 2n-3 \right)\cdots \left( 1 \right) \right]$
Taking 2 common from each of the even terms, we get
$\left( 2n \right)!=\left[ 2\left( n \right)\left( 2 \right)\left( n-1 \right)\left( 2 \right)\left( n-2 \right)\cdots \left( 2 \right)\left( 1 \right) \right]\left[ \left( 2n-1 \right)\left( 2n-3 \right)\cdots \left( 1 \right) \right]$
From 1 to n, we have n terms. Hence there are n 2s in the product.
Hence, we have
$\left( 2n \right)!=\left[ {{2}^{n}}\left( 1\times 2\times \cdots \times n \right) \right]\left[ \left( 2n-1 \right)\left( 2n-3 \right)\cdots \left( 1 \right) \right]$
We know that $1\times 2\times 3\cdots \left( n \right)=n!$
Hence, we have
$\left( 2n \right)!=\left[ {{2}^{n}}n! \right]\left[ \left( 2n-1 \right)\left( 2n-3 \right)\cdots \left( 1 \right) \right]$
Dividing both sides by n!, we get
$\dfrac{\left( 2n \right)!}{n!}={{2}^{n}}\left( 1\times 3\times 5\times \cdots \left( 2n-1 \right) \right)$
Q.E.D
Note: Alternative Solution:
We know that the power of prime p in n! is given by $e=\left[ \dfrac{n}{p} \right]+\left[ \dfrac{n}{{{p}^{2}}} \right]+\cdots $, where [x] denotes the greatest integer less or equal to x.
Since 2 is prime, we have
Power of 2 in (2n)! is equal to $\left[ \dfrac{2n}{2} \right]+\left[ \dfrac{2n}{{{2}^{2}}} \right]+\left[ \dfrac{2n}{{{2}^{3}}} \right]+\cdots $
Similarly, we have the power of 2 in n! is equal to $\left[ \dfrac{n}{2} \right]+\left[ \dfrac{n}{{{2}^{2}}} \right]+\cdots $
Hence, the power of 2 in $\dfrac{\left( 2n \right)!}{n!}$ is equal to $\left[ \dfrac{2n}{2} \right]+\left[ \dfrac{2n}{{{2}^{2}}} \right]+\left[ \dfrac{2n}{{{2}^{3}}} \right]+\cdots -\left[ \dfrac{n}{2} \right]+\left[ \dfrac{n}{{{2}^{2}}} \right]+\cdots $
Hence, we have
Power of 2 in $\dfrac{\left( 2n \right)!}{n!}$ is equal to
$n+\left[ \dfrac{n}{2} \right]+\left[ \dfrac{n}{{{2}^{2}}} \right]+\cdots -\left[ \dfrac{n}{2} \right]-\left[ \dfrac{n}{{{2}^{2}}} \right]\cdots =n$
The remaining terms in $\dfrac{\left( 2n \right)!}{n!}$ are all odd numbers from 1 to 2n-1.
Hence, we have
$\dfrac{\left( 2n \right)!}{n!}={{2}^{n}}\left( 1\times 3\times 5\times \cdots \left( 2n-1 \right) \right)$
Hence proved.
Now from every even term(2n,2n-2,2n-4,…) take 2 as common. Argue that there will be n such terms. Hence prove that $\left( 2n \right)!={{2}^{n}}\left( 1\times 3\times 5\times \cdots \left( 2n-1 \right) \right)\left( 1\times 2\times \cdots \times n \right)$
Divide both sides by n! and hence prove that $\dfrac{\left( 2n \right)!}{n!}={{2}^{n}}\left( 1\times 3\times 5\times \cdots \times \left( 2n-1 \right) \right)$
Complete step-by-step answer:
We know that $n!=n\left( n-1 \right)!$
Hence, we have $\left( 2n \right)!=2n\left( 2n-1 \right)!$
Continuing this way, we get
$\left( 2n \right)!=2n\left( 2n-1 \right)\left( 2n-2 \right)\cdots \left( 2 \right)\left( 1 \right)$
Writing even terms first and then the odd terms(This can be done since multiplication is both commutative and associative), we get
$\left( 2n \right)!=\left[ \left( 2n \right)\left( 2n-2 \right)\left( 2n-4 \right)\cdots 2 \right]\left[ \left( 2n-1 \right)\left( 2n-3 \right)\cdots \left( 1 \right) \right]$
Taking 2 common from each of the even terms, we get
$\left( 2n \right)!=\left[ 2\left( n \right)\left( 2 \right)\left( n-1 \right)\left( 2 \right)\left( n-2 \right)\cdots \left( 2 \right)\left( 1 \right) \right]\left[ \left( 2n-1 \right)\left( 2n-3 \right)\cdots \left( 1 \right) \right]$
From 1 to n, we have n terms. Hence there are n 2s in the product.
Hence, we have
$\left( 2n \right)!=\left[ {{2}^{n}}\left( 1\times 2\times \cdots \times n \right) \right]\left[ \left( 2n-1 \right)\left( 2n-3 \right)\cdots \left( 1 \right) \right]$
We know that $1\times 2\times 3\cdots \left( n \right)=n!$
Hence, we have
$\left( 2n \right)!=\left[ {{2}^{n}}n! \right]\left[ \left( 2n-1 \right)\left( 2n-3 \right)\cdots \left( 1 \right) \right]$
Dividing both sides by n!, we get
$\dfrac{\left( 2n \right)!}{n!}={{2}^{n}}\left( 1\times 3\times 5\times \cdots \left( 2n-1 \right) \right)$
Q.E.D
Note: Alternative Solution:
We know that the power of prime p in n! is given by $e=\left[ \dfrac{n}{p} \right]+\left[ \dfrac{n}{{{p}^{2}}} \right]+\cdots $, where [x] denotes the greatest integer less or equal to x.
Since 2 is prime, we have
Power of 2 in (2n)! is equal to $\left[ \dfrac{2n}{2} \right]+\left[ \dfrac{2n}{{{2}^{2}}} \right]+\left[ \dfrac{2n}{{{2}^{3}}} \right]+\cdots $
Similarly, we have the power of 2 in n! is equal to $\left[ \dfrac{n}{2} \right]+\left[ \dfrac{n}{{{2}^{2}}} \right]+\cdots $
Hence, the power of 2 in $\dfrac{\left( 2n \right)!}{n!}$ is equal to $\left[ \dfrac{2n}{2} \right]+\left[ \dfrac{2n}{{{2}^{2}}} \right]+\left[ \dfrac{2n}{{{2}^{3}}} \right]+\cdots -\left[ \dfrac{n}{2} \right]+\left[ \dfrac{n}{{{2}^{2}}} \right]+\cdots $
Hence, we have
Power of 2 in $\dfrac{\left( 2n \right)!}{n!}$ is equal to
$n+\left[ \dfrac{n}{2} \right]+\left[ \dfrac{n}{{{2}^{2}}} \right]+\cdots -\left[ \dfrac{n}{2} \right]-\left[ \dfrac{n}{{{2}^{2}}} \right]\cdots =n$
The remaining terms in $\dfrac{\left( 2n \right)!}{n!}$ are all odd numbers from 1 to 2n-1.
Hence, we have
$\dfrac{\left( 2n \right)!}{n!}={{2}^{n}}\left( 1\times 3\times 5\times \cdots \left( 2n-1 \right) \right)$
Hence proved.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

