
Prove that:
\[\dfrac{{\cos A\cos ecA - \sin A.\sec A}}{{\cos A + \sin A}} = \cos ecA - \sec A\]
Answer
617.7k+ views
Hint: Here we will solve the given equation by simplifying the L.H.S using the trigonometric formulae.
Complete step-by-step answer:
We have to prove \[\dfrac{{\cos A\cos ecA - \sin A.\sec A}}{{\cos A + \sin A}} = \cos ecA - \sec A\]. So let’s start simplifying the L.H.S part. Now $\cos ecA = \dfrac{1}{{\sin A}}$and $secA = \dfrac{1}{{\cos A}}$
Using it in the L.H.S part, we get
$\Rightarrow$ $\dfrac{{\dfrac{{\cos A}}{{\sin A}} - \dfrac{{\sin A}}{{\cos A}}}}{{\cos A + \sin A}}$
Now taking LCM in the numerator part we get
$\Rightarrow$ $\dfrac{{{{\cos }^2}A - {{\sin }^2}A}}{{(\cos A + \sin A)(\sin A.\cos A)}}$
Now $({a^2} - {b^2}) = (a + b)(a - b)$ using this in numerator
$\Rightarrow$ $\dfrac{{(\cos A - \sin A)(\cos A + \sin A)}}{{(\sin A\cos A)(\sin A + \cos A)}} = \dfrac{{(\cos A - \sin A)}}{{\sin A.\cos A}}$
Segregating the denominator for separate terms in numerator we have
$\Rightarrow$ $\dfrac{{\cos A}}{{\sin A.\cos A}} - \dfrac{{\sin A}}{{\sin A.\cos A}} = \dfrac{1}{{\sin A}} - \dfrac{1}{{\cos A}}$
$\Rightarrow$ $\cos ecA - \sec A$ = R.H.S.
Clearly, L.H.S=R.H.S.
Hence proved.
Note: Whenever you come across such questions, always start simplifying one side either L.H.S or R.H.S, using some trigonometric identities we can ultimately arrive at the required result.
Complete step-by-step answer:
We have to prove \[\dfrac{{\cos A\cos ecA - \sin A.\sec A}}{{\cos A + \sin A}} = \cos ecA - \sec A\]. So let’s start simplifying the L.H.S part. Now $\cos ecA = \dfrac{1}{{\sin A}}$and $secA = \dfrac{1}{{\cos A}}$
Using it in the L.H.S part, we get
$\Rightarrow$ $\dfrac{{\dfrac{{\cos A}}{{\sin A}} - \dfrac{{\sin A}}{{\cos A}}}}{{\cos A + \sin A}}$
Now taking LCM in the numerator part we get
$\Rightarrow$ $\dfrac{{{{\cos }^2}A - {{\sin }^2}A}}{{(\cos A + \sin A)(\sin A.\cos A)}}$
Now $({a^2} - {b^2}) = (a + b)(a - b)$ using this in numerator
$\Rightarrow$ $\dfrac{{(\cos A - \sin A)(\cos A + \sin A)}}{{(\sin A\cos A)(\sin A + \cos A)}} = \dfrac{{(\cos A - \sin A)}}{{\sin A.\cos A}}$
Segregating the denominator for separate terms in numerator we have
$\Rightarrow$ $\dfrac{{\cos A}}{{\sin A.\cos A}} - \dfrac{{\sin A}}{{\sin A.\cos A}} = \dfrac{1}{{\sin A}} - \dfrac{1}{{\cos A}}$
$\Rightarrow$ $\cos ecA - \sec A$ = R.H.S.
Clearly, L.H.S=R.H.S.
Hence proved.
Note: Whenever you come across such questions, always start simplifying one side either L.H.S or R.H.S, using some trigonometric identities we can ultimately arrive at the required result.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

