
Prove that ${{\cot }^{-1}}\left[ \dfrac{\sqrt{1+\sin x}-\sqrt{1-\sin x}}{\sqrt{1+\sin x}+\sqrt{1-\sin x}} \right]=\left[\dfrac{\pi}{2}-\dfrac{x}{2} \right];x\in \left( 0,\dfrac{\pi }{4} \right)$.
Answer
523.8k+ views
Hint: Change the given cot inverse function into tan inverse function by using the formula: ${{\cot }^{-1}}x={{\tan }^{-1}}\dfrac{1}{x}$. Now, write $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$ and $1={{\cos }^{2}}\dfrac{x}{2}+{{\sin }^{2}}\dfrac{x}{2}$. Using these substitutions, write, $1+\sin x={{\left( \cos \dfrac{x}{2}+\sin \dfrac{x}{2} \right)}^{2}}$ and $1-\sin x={{\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right)}^{2}}$. Remove the square root sign. A modulus sign will be introduced. To remove modulus signs, check whether the expression inside the mod is positive or negative. If it is positive then, remove the mod simply and if it is negative then remove the mod by adding a negative sign in the expression. Finally, use the identity: ${{\tan }^{-1}}\left( \tan \theta \right)=\theta $, to get the answer.
Complete step-by-step solution:
We have to prove: ${{\cot }^{-1}}\left[ \dfrac{\sqrt{1+\sin x}-\sqrt{1-\sin x}}{\sqrt{1+\sin x}+\sqrt{1-\sin x}} \right]=\dfrac{x}{2}$
$L.H.S={{\cot }^{-1}}\left[ \dfrac{\sqrt{1+\sin x}-\sqrt{1-\sin x}}{\sqrt{1+\sin x}+\sqrt{1-\sin x}} \right]$
Converting the given cot inverse function into tan inverse function by using the formula: ${{\cot }^{-1}}x={{\tan }^{-1}}\dfrac{1}{x}$, we get,
$L.H.S={{\cot }^{-1}}\left[ \dfrac{\sqrt{1+\sin x}-\sqrt{1-\sin x}}{\sqrt{1+\sin x}+\sqrt{1-\sin x}} \right]={{\tan }^{-1}}\left[ \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \right]$
Now, writing $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$ and $1={{\cos }^{2}}\dfrac{x}{2}+{{\sin }^{2}}\dfrac{x}{2}$, we get,
$L.H.S={{\tan }^{-1}}\left[ \dfrac{\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}+2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}+\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}-2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}{\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}+2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}-\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}-2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}} \right]$
This can be written as,
$\begin{align}
& L.H.S={{\tan }^{-1}}\left[ \dfrac{\sqrt{{{\left( \cos \dfrac{x}{2}+\sin \dfrac{x}{2} \right)}^{2}}}+\sqrt{{{\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right)}^{2}}}}{\sqrt{{{\left( \cos \dfrac{x}{2}+\sin \dfrac{x}{2} \right)}^{2}}}-\sqrt{{{\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right)}^{2}}}} \right] \\
& ={{\tan }^{-1}}\left[ \dfrac{\left| \cos \dfrac{x}{2}+\sin \dfrac{x}{2} \right|+\left| \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right|}{\left| \cos \dfrac{x}{2}+\sin \dfrac{x}{2} \right|-\left| \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right|} \right] \\
\end{align}$
Now, we have been given $x\in \left( 0,\dfrac{\pi }{4} \right)$. Therefore, $\dfrac{x}{2}\in \left( 0,\dfrac{\pi }{8} \right)$.
We know that, in this range cosine of any angle is greater than sine of that angle. Therefore, the terms inside mod are positive.
$\begin{align}
& \Rightarrow L.H.S={{\tan }^{-1}}\left[ \dfrac{\left( \cos \dfrac{x}{2}+\sin \dfrac{x}{2} \right)+\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right)}{\left( \cos \dfrac{x}{2}+\sin \dfrac{x}{2} \right)-\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right)} \right] \\
& ={{\tan }^{-1}}\left[ \dfrac{2\cos \dfrac{x}{2}}{2\sin \dfrac{x}{2}} \right] \\
& ={{\tan }^{-1}}\left[ \dfrac{\cos \dfrac{x}{2}}{\sin \dfrac{x}{2}} \right] \\
& ={{\tan }^{-1}}\left[ \cot \dfrac{x}{2} \right] \\
& ={{\tan }^{-1}}\left[ \tan\left(\dfrac{\pi}{2}- \dfrac{x}{2}\right) \right] \\
\end{align}$
Using the identity: ${{\tan }^{-1}}\left( \tan \theta \right)=\theta $, we get,
$\begin{align}
& L.H.S=\left[\dfrac{\pi}{2}-\dfrac{x}{2} \right] \\
& =R.H.S \\
\end{align}$
Note: One may note that while removing the mod, we have to be careful about the conditions given, that is, the range of ‘x’. Positive or negative value of a trigonometric function depends on the quadrant in which the angle is lying. In the above question, the angle $\dfrac{x}{2}$ lies in the first quadrant, therefore, the value of the trigonometric function inside the mod is positive.
Complete step-by-step solution:
We have to prove: ${{\cot }^{-1}}\left[ \dfrac{\sqrt{1+\sin x}-\sqrt{1-\sin x}}{\sqrt{1+\sin x}+\sqrt{1-\sin x}} \right]=\dfrac{x}{2}$
$L.H.S={{\cot }^{-1}}\left[ \dfrac{\sqrt{1+\sin x}-\sqrt{1-\sin x}}{\sqrt{1+\sin x}+\sqrt{1-\sin x}} \right]$
Converting the given cot inverse function into tan inverse function by using the formula: ${{\cot }^{-1}}x={{\tan }^{-1}}\dfrac{1}{x}$, we get,
$L.H.S={{\cot }^{-1}}\left[ \dfrac{\sqrt{1+\sin x}-\sqrt{1-\sin x}}{\sqrt{1+\sin x}+\sqrt{1-\sin x}} \right]={{\tan }^{-1}}\left[ \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \right]$
Now, writing $\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$ and $1={{\cos }^{2}}\dfrac{x}{2}+{{\sin }^{2}}\dfrac{x}{2}$, we get,
$L.H.S={{\tan }^{-1}}\left[ \dfrac{\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}+2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}+\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}-2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}{\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}+2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}-\sqrt{{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}-2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}} \right]$
This can be written as,
$\begin{align}
& L.H.S={{\tan }^{-1}}\left[ \dfrac{\sqrt{{{\left( \cos \dfrac{x}{2}+\sin \dfrac{x}{2} \right)}^{2}}}+\sqrt{{{\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right)}^{2}}}}{\sqrt{{{\left( \cos \dfrac{x}{2}+\sin \dfrac{x}{2} \right)}^{2}}}-\sqrt{{{\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right)}^{2}}}} \right] \\
& ={{\tan }^{-1}}\left[ \dfrac{\left| \cos \dfrac{x}{2}+\sin \dfrac{x}{2} \right|+\left| \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right|}{\left| \cos \dfrac{x}{2}+\sin \dfrac{x}{2} \right|-\left| \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right|} \right] \\
\end{align}$
Now, we have been given $x\in \left( 0,\dfrac{\pi }{4} \right)$. Therefore, $\dfrac{x}{2}\in \left( 0,\dfrac{\pi }{8} \right)$.
We know that, in this range cosine of any angle is greater than sine of that angle. Therefore, the terms inside mod are positive.
$\begin{align}
& \Rightarrow L.H.S={{\tan }^{-1}}\left[ \dfrac{\left( \cos \dfrac{x}{2}+\sin \dfrac{x}{2} \right)+\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right)}{\left( \cos \dfrac{x}{2}+\sin \dfrac{x}{2} \right)-\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right)} \right] \\
& ={{\tan }^{-1}}\left[ \dfrac{2\cos \dfrac{x}{2}}{2\sin \dfrac{x}{2}} \right] \\
& ={{\tan }^{-1}}\left[ \dfrac{\cos \dfrac{x}{2}}{\sin \dfrac{x}{2}} \right] \\
& ={{\tan }^{-1}}\left[ \cot \dfrac{x}{2} \right] \\
& ={{\tan }^{-1}}\left[ \tan\left(\dfrac{\pi}{2}- \dfrac{x}{2}\right) \right] \\
\end{align}$
Using the identity: ${{\tan }^{-1}}\left( \tan \theta \right)=\theta $, we get,
$\begin{align}
& L.H.S=\left[\dfrac{\pi}{2}-\dfrac{x}{2} \right] \\
& =R.H.S \\
\end{align}$
Note: One may note that while removing the mod, we have to be careful about the conditions given, that is, the range of ‘x’. Positive or negative value of a trigonometric function depends on the quadrant in which the angle is lying. In the above question, the angle $\dfrac{x}{2}$ lies in the first quadrant, therefore, the value of the trigonometric function inside the mod is positive.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

