
Prove that
$2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\sec }^{-1}}\left( \dfrac{5\sqrt{2}}{7} \right)+2{{\tan }^{-1}}\left( \dfrac{1}{8} \right)=\dfrac{\pi }{4}$
Answer
607.8k+ views
Hint: For solving this question we will use the formula $2{{\tan }^{-1}}x={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)$ , ${{\tan }^{2}}\theta \text{=se}{{\text{c}}^{2}}\theta \text{-1}$ and ${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)$ . After that, we will try to solve $2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\sec }^{-1}}\left( \dfrac{5\sqrt{2}}{7} \right)+2{{\tan }^{-1}}\left( \dfrac{1}{8} \right)$ and prove that, it is equal to ${{\tan }^{-1}}\left( 1 \right)$ . Then, we will prove the desired result easily.
Complete step-by-step solution -
Given:
We have to prove the following equation:
$2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\sec }^{-1}}\left( \dfrac{5\sqrt{2}}{7} \right)+2{{\tan }^{-1}}\left( \dfrac{1}{8} \right)=\dfrac{\pi }{4}$
Now, let $\alpha =2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)$ , $\beta ={{\sec }^{-1}}\left( \dfrac{5\sqrt{2}}{7} \right)$ and $\gamma =2{{\tan }^{-1}}\left( \dfrac{1}{8} \right)$ . So, we will solve for $\alpha $ , $\beta $ and $\gamma $ separately. Then, we will find the value of $\alpha +\beta +\gamma $ .
Now, before we proceed further we should know the following formulas:
$ 2{{\tan }^{-1}}x={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)\text{ }\left( \text{if }-1 < x < 1 \right)...............\left( 1 \right) $
$ {{\tan }^{2}}\theta \text{=se}{{\text{c}}^{2}}\theta \text{-1 }....................\left( 2 \right) $
$ {{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\text{ }\left( \text{if }xy<1 \right).............................\left( 3 \right) $
$ {{\tan }^{-1}}1=\dfrac{\pi }{4}..................................\left( 4 \right) $
Now, we will simplify $\alpha $ , $\beta $ and $\gamma $ separately with the help of the above four formulas.
Simplification of $\alpha =2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)$ :
Now, we will use the formula from the equation (1) as $-1 < \dfrac{1}{5} < 1$ to write $ 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)={{\tan }^{-1}}\left( \dfrac{5}{12} \right)$ . Then,
$\begin{align}
& \alpha =2{{\tan }^{-1}}\left( \dfrac{1}{5} \right) \\
& \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{2\times \dfrac{1}{5}}{1-{{\left( \dfrac{1}{5} \right)}^{2}}} \right) \\
& \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{2\times 5}{{{5}^{2}}-1} \right) \\
& \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{10}{25-1} \right) \\
& \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{10}{24} \right) \\
& \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{5}{12} \right)........................\left( 5 \right) \\
\end{align}$
Simplification of $\gamma =2{{\tan }^{-1}}\left( \dfrac{1}{8} \right)$ :
Now, we will use the formula from the equation (1) as $-1<\dfrac{1}{8}<1$ to write $2{{\tan }^{-1}}\left( \dfrac{1}{8} \right)={{\tan }^{-1}}\left( \dfrac{16}{63} \right)$ . Then,
$\begin{align}
& \gamma =2{{\tan }^{-1}}\left( \dfrac{1}{8} \right) \\
& \Rightarrow \gamma ={{\tan }^{-1}}\left( \dfrac{2\times \dfrac{1}{8}}{1-{{\left( \dfrac{1}{8} \right)}^{2}}} \right) \\
& \Rightarrow \gamma ={{\tan }^{-1}}\left( \dfrac{2\times 8}{{{8}^{2}}-1} \right) \\
& \Rightarrow \gamma ={{\tan }^{-1}}\left( \dfrac{16}{64-1} \right) \\
& \Rightarrow \gamma ={{\tan }^{-1}}\left( \dfrac{16}{63} \right)........................\left( 6 \right) \\
\end{align}$
Simplification of $\beta ={{\sec }^{-1}}\left( \dfrac{5\sqrt{2}}{7} \right)$ :
Now, we write $\sec \beta =\dfrac{5\sqrt{2}}{7}$ and apply the formula from the equation (2) to get the value of $\tan \beta $ . Then,
$\begin{align}
& {{\tan }^{2}}\beta ={{\sec }^{2}}\beta -1 \\
& \Rightarrow {{\tan }^{2}}\beta ={{\left( \dfrac{5\sqrt{2}}{7} \right)}^{2}}-1 \\
& \Rightarrow {{\tan }^{2}}\beta =\dfrac{50}{49}-1 \\
& \Rightarrow {{\tan }^{2}}\beta =\dfrac{1}{49} \\
& \Rightarrow \tan \beta =\sqrt{\dfrac{1}{49}} \\
& \Rightarrow \tan \beta =\dfrac{1}{7} \\
\end{align}$
Now, as $\dfrac{5\sqrt{2}}{7}>1$ so, we can say that, $0<{{\sec }^{-1}}\left( \dfrac{5\sqrt{2}}{7} \right)<\dfrac{\pi }{2}$ and as $\tan \beta =\dfrac{1}{7}$ so, we can also write \[\beta ={{\tan }^{-1}}\left( \dfrac{1}{7} \right)\] . Then,
\[\beta ={{\tan }^{-1}}\left( \dfrac{1}{7} \right)..........................\left( 7 \right)\]
Now, we will calculate the value of $2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\sec }^{-1}}\left( \dfrac{5\sqrt{2}}{7} \right)+2{{\tan }^{-1}}\left( \dfrac{1}{8} \right)$ . And as per our assumption $\alpha =2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)$ , $\beta ={{\sec }^{-1}}\left( \dfrac{5\sqrt{2}}{7} \right)$ and $\gamma =2{{\tan }^{-1}}\left( \dfrac{1}{8} \right)$ . Then,
$\begin{align}
& 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\sec }^{-1}}\left( \dfrac{5\sqrt{2}}{7} \right)+2{{\tan }^{-1}}\left( \dfrac{1}{8} \right) \\
& \Rightarrow \alpha +\beta +\gamma \\
\end{align}$
Now, we put $\alpha ={{\tan }^{-1}}\left( \dfrac{5}{12} \right)$ from equation (5), $\gamma ={{\tan }^{-1}}\left( \dfrac{16}{63} \right)$ from equation (6) and \[\beta ={{\tan }^{-1}}\left( \dfrac{1}{7} \right)\] from equation (7) in the above expression. Then,
$\begin{align}
& \alpha +\beta +\gamma \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{5}{12} \right)+{{\tan }^{-1}}\left( \dfrac{1}{7} \right)+{{\tan }^{-1}}\left( \dfrac{16}{63} \right) \\
\end{align}$
Now, we will use the formula from equation (3) as $\dfrac{5}{12}\times \dfrac{1}{7}=\dfrac{5}{84}<1$ to write ${{\tan }^{-1}}\left( \dfrac{5}{12} \right)+{{\tan }^{-1}}\left( \dfrac{1}{7} \right)={{\tan }^{-1}}\left( \dfrac{47}{79} \right)$ in the above line. Then,
$\begin{align}
& {{\tan }^{-1}}\left( \dfrac{5}{12} \right)+{{\tan }^{-1}}\left( \dfrac{1}{7} \right)+{{\tan }^{-1}}\left( \dfrac{16}{63} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{\dfrac{5}{12}+\dfrac{1}{7}}{1-\dfrac{5}{12}\times \dfrac{1}{7}} \right)+{{\tan }^{-1}}\left( \dfrac{16}{63} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{5\times 7+12}{7\times 12-5} \right)+{{\tan }^{-1}}\left( \dfrac{16}{63} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{35+12}{84-5} \right)+{{\tan }^{-1}}\left( \dfrac{16}{63} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{47}{79} \right)+{{\tan }^{-1}}\left( \dfrac{16}{63} \right) \\
\end{align}$
Now, we will use the formula from equation (3) as $\dfrac{47}{79}\times \dfrac{16}{63}=\dfrac{752}{4788}<1$ to write ${{\tan }^{-1}}\left( \dfrac{47}{79} \right)+{{\tan }^{-1}}\left( \dfrac{16}{63} \right)={{\tan }^{-1}}\left( 1 \right)$ in the above line. Then,
$\begin{align}
& {{\tan }^{-1}}\left( \dfrac{47}{79} \right)+{{\tan }^{-1}}\left( \dfrac{16}{63} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{\dfrac{47}{79}+\dfrac{16}{63}}{1-\dfrac{47}{79}\times \dfrac{16}{63}} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{47\times 63+16\times 79}{79\times 63-47\times 16} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{2961+1264}{4977-752} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{4225}{4225} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( 1 \right) \\
\end{align}$
Now, from the formula from the equation (4), we can write ${{\tan }^{-1}}\left( 1 \right)=\dfrac{\pi }{4}$ . Then,
$\begin{align}
& {{\tan }^{-1}}\left( 1 \right) \\
& \Rightarrow \dfrac{\pi }{4} \\
\end{align}$
Now, from the above result, we conclude that, $2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\sec }^{-1}}\left( \dfrac{5\sqrt{2}}{7} \right)+2{{\tan }^{-1}}\left( \dfrac{1}{8} \right)=\dfrac{\pi }{4}$ .
Thus, $2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\sec }^{-1}}\left( \dfrac{5\sqrt{2}}{7} \right)+2{{\tan }^{-1}}\left( \dfrac{1}{8} \right)=\dfrac{\pi }{4}$ .
Hence, proved.
Note: Here, the student should understand what is asked in the question and then proceed in the right direction to prove the desired result quickly. Moreover, we should use formulas ${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)$ and ${{\tan }^{2}}\theta \text{=se}{{\text{c}}^{2}}\theta \text{-1}$ to avoid tough calculation. And avoid calculation mistakes while solving.
Complete step-by-step solution -
Given:
We have to prove the following equation:
$2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\sec }^{-1}}\left( \dfrac{5\sqrt{2}}{7} \right)+2{{\tan }^{-1}}\left( \dfrac{1}{8} \right)=\dfrac{\pi }{4}$
Now, let $\alpha =2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)$ , $\beta ={{\sec }^{-1}}\left( \dfrac{5\sqrt{2}}{7} \right)$ and $\gamma =2{{\tan }^{-1}}\left( \dfrac{1}{8} \right)$ . So, we will solve for $\alpha $ , $\beta $ and $\gamma $ separately. Then, we will find the value of $\alpha +\beta +\gamma $ .
Now, before we proceed further we should know the following formulas:
$ 2{{\tan }^{-1}}x={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)\text{ }\left( \text{if }-1 < x < 1 \right)...............\left( 1 \right) $
$ {{\tan }^{2}}\theta \text{=se}{{\text{c}}^{2}}\theta \text{-1 }....................\left( 2 \right) $
$ {{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\text{ }\left( \text{if }xy<1 \right).............................\left( 3 \right) $
$ {{\tan }^{-1}}1=\dfrac{\pi }{4}..................................\left( 4 \right) $
Now, we will simplify $\alpha $ , $\beta $ and $\gamma $ separately with the help of the above four formulas.
Simplification of $\alpha =2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)$ :
Now, we will use the formula from the equation (1) as $-1 < \dfrac{1}{5} < 1$ to write $ 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)={{\tan }^{-1}}\left( \dfrac{5}{12} \right)$ . Then,
$\begin{align}
& \alpha =2{{\tan }^{-1}}\left( \dfrac{1}{5} \right) \\
& \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{2\times \dfrac{1}{5}}{1-{{\left( \dfrac{1}{5} \right)}^{2}}} \right) \\
& \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{2\times 5}{{{5}^{2}}-1} \right) \\
& \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{10}{25-1} \right) \\
& \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{10}{24} \right) \\
& \Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{5}{12} \right)........................\left( 5 \right) \\
\end{align}$
Simplification of $\gamma =2{{\tan }^{-1}}\left( \dfrac{1}{8} \right)$ :
Now, we will use the formula from the equation (1) as $-1<\dfrac{1}{8}<1$ to write $2{{\tan }^{-1}}\left( \dfrac{1}{8} \right)={{\tan }^{-1}}\left( \dfrac{16}{63} \right)$ . Then,
$\begin{align}
& \gamma =2{{\tan }^{-1}}\left( \dfrac{1}{8} \right) \\
& \Rightarrow \gamma ={{\tan }^{-1}}\left( \dfrac{2\times \dfrac{1}{8}}{1-{{\left( \dfrac{1}{8} \right)}^{2}}} \right) \\
& \Rightarrow \gamma ={{\tan }^{-1}}\left( \dfrac{2\times 8}{{{8}^{2}}-1} \right) \\
& \Rightarrow \gamma ={{\tan }^{-1}}\left( \dfrac{16}{64-1} \right) \\
& \Rightarrow \gamma ={{\tan }^{-1}}\left( \dfrac{16}{63} \right)........................\left( 6 \right) \\
\end{align}$
Simplification of $\beta ={{\sec }^{-1}}\left( \dfrac{5\sqrt{2}}{7} \right)$ :
Now, we write $\sec \beta =\dfrac{5\sqrt{2}}{7}$ and apply the formula from the equation (2) to get the value of $\tan \beta $ . Then,
$\begin{align}
& {{\tan }^{2}}\beta ={{\sec }^{2}}\beta -1 \\
& \Rightarrow {{\tan }^{2}}\beta ={{\left( \dfrac{5\sqrt{2}}{7} \right)}^{2}}-1 \\
& \Rightarrow {{\tan }^{2}}\beta =\dfrac{50}{49}-1 \\
& \Rightarrow {{\tan }^{2}}\beta =\dfrac{1}{49} \\
& \Rightarrow \tan \beta =\sqrt{\dfrac{1}{49}} \\
& \Rightarrow \tan \beta =\dfrac{1}{7} \\
\end{align}$
Now, as $\dfrac{5\sqrt{2}}{7}>1$ so, we can say that, $0<{{\sec }^{-1}}\left( \dfrac{5\sqrt{2}}{7} \right)<\dfrac{\pi }{2}$ and as $\tan \beta =\dfrac{1}{7}$ so, we can also write \[\beta ={{\tan }^{-1}}\left( \dfrac{1}{7} \right)\] . Then,
\[\beta ={{\tan }^{-1}}\left( \dfrac{1}{7} \right)..........................\left( 7 \right)\]
Now, we will calculate the value of $2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\sec }^{-1}}\left( \dfrac{5\sqrt{2}}{7} \right)+2{{\tan }^{-1}}\left( \dfrac{1}{8} \right)$ . And as per our assumption $\alpha =2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)$ , $\beta ={{\sec }^{-1}}\left( \dfrac{5\sqrt{2}}{7} \right)$ and $\gamma =2{{\tan }^{-1}}\left( \dfrac{1}{8} \right)$ . Then,
$\begin{align}
& 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\sec }^{-1}}\left( \dfrac{5\sqrt{2}}{7} \right)+2{{\tan }^{-1}}\left( \dfrac{1}{8} \right) \\
& \Rightarrow \alpha +\beta +\gamma \\
\end{align}$
Now, we put $\alpha ={{\tan }^{-1}}\left( \dfrac{5}{12} \right)$ from equation (5), $\gamma ={{\tan }^{-1}}\left( \dfrac{16}{63} \right)$ from equation (6) and \[\beta ={{\tan }^{-1}}\left( \dfrac{1}{7} \right)\] from equation (7) in the above expression. Then,
$\begin{align}
& \alpha +\beta +\gamma \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{5}{12} \right)+{{\tan }^{-1}}\left( \dfrac{1}{7} \right)+{{\tan }^{-1}}\left( \dfrac{16}{63} \right) \\
\end{align}$
Now, we will use the formula from equation (3) as $\dfrac{5}{12}\times \dfrac{1}{7}=\dfrac{5}{84}<1$ to write ${{\tan }^{-1}}\left( \dfrac{5}{12} \right)+{{\tan }^{-1}}\left( \dfrac{1}{7} \right)={{\tan }^{-1}}\left( \dfrac{47}{79} \right)$ in the above line. Then,
$\begin{align}
& {{\tan }^{-1}}\left( \dfrac{5}{12} \right)+{{\tan }^{-1}}\left( \dfrac{1}{7} \right)+{{\tan }^{-1}}\left( \dfrac{16}{63} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{\dfrac{5}{12}+\dfrac{1}{7}}{1-\dfrac{5}{12}\times \dfrac{1}{7}} \right)+{{\tan }^{-1}}\left( \dfrac{16}{63} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{5\times 7+12}{7\times 12-5} \right)+{{\tan }^{-1}}\left( \dfrac{16}{63} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{35+12}{84-5} \right)+{{\tan }^{-1}}\left( \dfrac{16}{63} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{47}{79} \right)+{{\tan }^{-1}}\left( \dfrac{16}{63} \right) \\
\end{align}$
Now, we will use the formula from equation (3) as $\dfrac{47}{79}\times \dfrac{16}{63}=\dfrac{752}{4788}<1$ to write ${{\tan }^{-1}}\left( \dfrac{47}{79} \right)+{{\tan }^{-1}}\left( \dfrac{16}{63} \right)={{\tan }^{-1}}\left( 1 \right)$ in the above line. Then,
$\begin{align}
& {{\tan }^{-1}}\left( \dfrac{47}{79} \right)+{{\tan }^{-1}}\left( \dfrac{16}{63} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{\dfrac{47}{79}+\dfrac{16}{63}}{1-\dfrac{47}{79}\times \dfrac{16}{63}} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{47\times 63+16\times 79}{79\times 63-47\times 16} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{2961+1264}{4977-752} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{4225}{4225} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( 1 \right) \\
\end{align}$
Now, from the formula from the equation (4), we can write ${{\tan }^{-1}}\left( 1 \right)=\dfrac{\pi }{4}$ . Then,
$\begin{align}
& {{\tan }^{-1}}\left( 1 \right) \\
& \Rightarrow \dfrac{\pi }{4} \\
\end{align}$
Now, from the above result, we conclude that, $2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\sec }^{-1}}\left( \dfrac{5\sqrt{2}}{7} \right)+2{{\tan }^{-1}}\left( \dfrac{1}{8} \right)=\dfrac{\pi }{4}$ .
Thus, $2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\sec }^{-1}}\left( \dfrac{5\sqrt{2}}{7} \right)+2{{\tan }^{-1}}\left( \dfrac{1}{8} \right)=\dfrac{\pi }{4}$ .
Hence, proved.
Note: Here, the student should understand what is asked in the question and then proceed in the right direction to prove the desired result quickly. Moreover, we should use formulas ${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)$ and ${{\tan }^{2}}\theta \text{=se}{{\text{c}}^{2}}\theta \text{-1}$ to avoid tough calculation. And avoid calculation mistakes while solving.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

