
Prove that \[2{{\tan }^{-1}}\left( \dfrac{1}{3} \right)+{{\tan }^{-1}}\left( \dfrac{1}{7} \right)=\dfrac{\pi }{4}\]
Answer
596.1k+ views
Hint: First expand the given expression in left hand side using the formula for expansion of \[{{\tan }^{-1}}x+{{\tan }^{-1}}y\]now substitute the values of x , y according to given expression and do the basic mathematical operations like addition and multiplication to get the required expression in the right hand side.
Complete step-by-step answer:
Now considering L.H.S,
\[2{{\tan }^{-1}}\left( \dfrac{1}{3} \right)+{{\tan }^{-1}}\left( \dfrac{1}{7} \right)\]
The first term is in the form of \[2{{\tan }^{-1}}\left( x \right)\]
Now applying the formula,
\[2{{\tan }^{-1}}\left( x \right)={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
Substituting \[x=\dfrac{1}{3}\]in (1) we get
\[={{\tan }^{-1}}\left( \dfrac{2\times \dfrac{1}{3}}{1-{{\left( \dfrac{1}{3} \right)}^{2}}} \right)+{{\tan }^{-1}}\left( \dfrac{1}{7} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{3}}{\dfrac{8}{9}} \right)+{{\tan }^{-1}}\left( \dfrac{1}{7} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{3}{4} \right)+{{\tan }^{-1}}\left( \dfrac{1}{7} \right)\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (a)
The above expression (a) is in the form of \[{{\tan }^{-1}}x+{{\tan }^{-1}}y\]
By applying the formula
\[{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Substituting \[x=\dfrac{3}{4}\]and \[y=\dfrac{1}{7}\]in (2) we get,
\[={{\tan }^{-1}}\left( \dfrac{\left( \dfrac{3}{4} \right)+\left( \dfrac{1}{7} \right)}{1-\left( \dfrac{3}{4} \right)\left( \dfrac{1}{7} \right)} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{21+4}{28}}{\dfrac{28-3}{28}} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{25}{28}}{\dfrac{25}{28}} \right)\]
\[={{\tan }^{-1}}\left( 1 \right)\]
\[=\dfrac{\pi }{4}\]
= R.H.S
Note: if \[xy<1,{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\]and if \[xy>1,{{\tan }^{-1}}x+{{\tan }^{-1}}y=\pi +{{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\].Since the trigonometric functions are periodic functions, these functions are not bijections in their natural domains. Therefore the inverse function does not exist. By identifying the proper domains they are bijections and so an inverse function exists.
Complete step-by-step answer:
Now considering L.H.S,
\[2{{\tan }^{-1}}\left( \dfrac{1}{3} \right)+{{\tan }^{-1}}\left( \dfrac{1}{7} \right)\]
The first term is in the form of \[2{{\tan }^{-1}}\left( x \right)\]
Now applying the formula,
\[2{{\tan }^{-1}}\left( x \right)={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
Substituting \[x=\dfrac{1}{3}\]in (1) we get
\[={{\tan }^{-1}}\left( \dfrac{2\times \dfrac{1}{3}}{1-{{\left( \dfrac{1}{3} \right)}^{2}}} \right)+{{\tan }^{-1}}\left( \dfrac{1}{7} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{3}}{\dfrac{8}{9}} \right)+{{\tan }^{-1}}\left( \dfrac{1}{7} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{3}{4} \right)+{{\tan }^{-1}}\left( \dfrac{1}{7} \right)\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (a)
The above expression (a) is in the form of \[{{\tan }^{-1}}x+{{\tan }^{-1}}y\]
By applying the formula
\[{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Substituting \[x=\dfrac{3}{4}\]and \[y=\dfrac{1}{7}\]in (2) we get,
\[={{\tan }^{-1}}\left( \dfrac{\left( \dfrac{3}{4} \right)+\left( \dfrac{1}{7} \right)}{1-\left( \dfrac{3}{4} \right)\left( \dfrac{1}{7} \right)} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{21+4}{28}}{\dfrac{28-3}{28}} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{25}{28}}{\dfrac{25}{28}} \right)\]
\[={{\tan }^{-1}}\left( 1 \right)\]
\[=\dfrac{\pi }{4}\]
= R.H.S
Note: if \[xy<1,{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\]and if \[xy>1,{{\tan }^{-1}}x+{{\tan }^{-1}}y=\pi +{{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\].Since the trigonometric functions are periodic functions, these functions are not bijections in their natural domains. Therefore the inverse function does not exist. By identifying the proper domains they are bijections and so an inverse function exists.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Which state in India is known as the Granary of India class 12 social science CBSE

