
Prove that \[2{{\tan }^{-1}}\left( \dfrac{1}{3} \right)+{{\tan }^{-1}}\left( \dfrac{1}{7} \right)=\dfrac{\pi }{4}\]
Answer
609k+ views
Hint: First expand the given expression in left hand side using the formula for expansion of \[{{\tan }^{-1}}x+{{\tan }^{-1}}y\]now substitute the values of x , y according to given expression and do the basic mathematical operations like addition and multiplication to get the required expression in the right hand side.
Complete step-by-step answer:
Now considering L.H.S,
\[2{{\tan }^{-1}}\left( \dfrac{1}{3} \right)+{{\tan }^{-1}}\left( \dfrac{1}{7} \right)\]
The first term is in the form of \[2{{\tan }^{-1}}\left( x \right)\]
Now applying the formula,
\[2{{\tan }^{-1}}\left( x \right)={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
Substituting \[x=\dfrac{1}{3}\]in (1) we get
\[={{\tan }^{-1}}\left( \dfrac{2\times \dfrac{1}{3}}{1-{{\left( \dfrac{1}{3} \right)}^{2}}} \right)+{{\tan }^{-1}}\left( \dfrac{1}{7} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{3}}{\dfrac{8}{9}} \right)+{{\tan }^{-1}}\left( \dfrac{1}{7} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{3}{4} \right)+{{\tan }^{-1}}\left( \dfrac{1}{7} \right)\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (a)
The above expression (a) is in the form of \[{{\tan }^{-1}}x+{{\tan }^{-1}}y\]
By applying the formula
\[{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Substituting \[x=\dfrac{3}{4}\]and \[y=\dfrac{1}{7}\]in (2) we get,
\[={{\tan }^{-1}}\left( \dfrac{\left( \dfrac{3}{4} \right)+\left( \dfrac{1}{7} \right)}{1-\left( \dfrac{3}{4} \right)\left( \dfrac{1}{7} \right)} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{21+4}{28}}{\dfrac{28-3}{28}} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{25}{28}}{\dfrac{25}{28}} \right)\]
\[={{\tan }^{-1}}\left( 1 \right)\]
\[=\dfrac{\pi }{4}\]
= R.H.S
Note: if \[xy<1,{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\]and if \[xy>1,{{\tan }^{-1}}x+{{\tan }^{-1}}y=\pi +{{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\].Since the trigonometric functions are periodic functions, these functions are not bijections in their natural domains. Therefore the inverse function does not exist. By identifying the proper domains they are bijections and so an inverse function exists.
Complete step-by-step answer:
Now considering L.H.S,
\[2{{\tan }^{-1}}\left( \dfrac{1}{3} \right)+{{\tan }^{-1}}\left( \dfrac{1}{7} \right)\]
The first term is in the form of \[2{{\tan }^{-1}}\left( x \right)\]
Now applying the formula,
\[2{{\tan }^{-1}}\left( x \right)={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
Substituting \[x=\dfrac{1}{3}\]in (1) we get
\[={{\tan }^{-1}}\left( \dfrac{2\times \dfrac{1}{3}}{1-{{\left( \dfrac{1}{3} \right)}^{2}}} \right)+{{\tan }^{-1}}\left( \dfrac{1}{7} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{3}}{\dfrac{8}{9}} \right)+{{\tan }^{-1}}\left( \dfrac{1}{7} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{3}{4} \right)+{{\tan }^{-1}}\left( \dfrac{1}{7} \right)\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (a)
The above expression (a) is in the form of \[{{\tan }^{-1}}x+{{\tan }^{-1}}y\]
By applying the formula
\[{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Substituting \[x=\dfrac{3}{4}\]and \[y=\dfrac{1}{7}\]in (2) we get,
\[={{\tan }^{-1}}\left( \dfrac{\left( \dfrac{3}{4} \right)+\left( \dfrac{1}{7} \right)}{1-\left( \dfrac{3}{4} \right)\left( \dfrac{1}{7} \right)} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{21+4}{28}}{\dfrac{28-3}{28}} \right)\]
\[={{\tan }^{-1}}\left( \dfrac{\dfrac{25}{28}}{\dfrac{25}{28}} \right)\]
\[={{\tan }^{-1}}\left( 1 \right)\]
\[=\dfrac{\pi }{4}\]
= R.H.S
Note: if \[xy<1,{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\]and if \[xy>1,{{\tan }^{-1}}x+{{\tan }^{-1}}y=\pi +{{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)\].Since the trigonometric functions are periodic functions, these functions are not bijections in their natural domains. Therefore the inverse function does not exist. By identifying the proper domains they are bijections and so an inverse function exists.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

