
Prove that $2{{\tan }^{-1}}\dfrac{3}{4}-{{\tan }^{-1}}\dfrac{17}{31}=\dfrac{\pi }{4}$ .
Answer
609.6k+ views
Hint: The above question is related to inverse trigonometric function and for solving the problem, you need to use the formulas ${{\tan }^{-1}}A-{{\tan }^{-1}}B={{\tan }^{-1}}\dfrac{A-B}{1+AB}$ and ${{\tan }^{-1}}A+{{\tan }^{-1}}B={{\tan }^{-1}}\dfrac{A+B}{1-AB}$ .
Complete step-by-step answer:
Now moving to the solution to the above question, we will start with the left-hand side of the equation given in the question.
$2{{\tan }^{-1}}\dfrac{3}{4}-{{\tan }^{-1}}\dfrac{17}{31}$
$={{\tan }^{-1}}\dfrac{3}{4}+{{\tan }^{-1}}\dfrac{3}{4}-{{\tan }^{-1}}\dfrac{17}{31}$
Now, we know $\dfrac{3}{4}\times \dfrac{3}{4}<1$ . So, if we use the formula ${{\tan }^{-1}}A+{{\tan }^{-1}}B={{\tan }^{-1}}\dfrac{A+B}{1-AB}$ , we get
${{\tan }^{-1}}\dfrac{\dfrac{3}{4}+\dfrac{3}{4}}{1-\dfrac{3\times 3}{4\times 4}}-{{\tan }^{-1}}\dfrac{17}{31}$
$={{\tan }^{-1}}\dfrac{\dfrac{3}{2}}{\dfrac{16-9}{16}}-{{\tan }^{-1}}\dfrac{17}{31}$
$={{\tan }^{-1}}\dfrac{24}{7}-{{\tan }^{-1}}\dfrac{17}{31}$
Now we know that ${{\tan }^{-1}}A-{{\tan }^{-1}}B={{\tan }^{-1}}\dfrac{A-B}{1+AB}$ .
${{\tan }^{-1}}\dfrac{24}{7}-{{\tan }^{-1}}\dfrac{17}{31}={{\tan }^{-1}}\left( \dfrac{\dfrac{24}{7}-\dfrac{17}{31}}{1+\dfrac{24\times 17}{7\times 31}} \right)$
Now further solving the right-hand side of the above equation, we get
$={{\tan }^{-1}}\left( \dfrac{\dfrac{24\times 31-7\times 17}{7\times 31}}{\dfrac{7\times 13-24\times 17}{7\times 31}} \right)$
$={{\tan }^{-1}}\left( \dfrac{744-119}{217+408} \right)$
$={{\tan }^{-1}}\left( \dfrac{625}{625} \right)$
$={{\tan }^{-1}}1$
We know that the value of ${{\tan }^{-1}}1$ is equal to $\dfrac{\pi }{4}$ , which is equal to the right-hand side of the equation that we are asked to prove. So, we can say that we have proved that $2{{\tan }^{-1}}\dfrac{3}{4}-{{\tan }^{-1}}\dfrac{17}{31}=\dfrac{\pi }{4}$ .
Note: While dealing with inverse trigonometric functions, it is preferred to know about the domains and ranges of the different inverse trigonometric functions. For example: the domain of ${{\sin }^{-1}}x$ is $[-1,1]$ and the range is $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$ . Also it is important to check whether the multiplication of A and B is less than one or not to use proper formula.
Complete step-by-step answer:
Now moving to the solution to the above question, we will start with the left-hand side of the equation given in the question.
$2{{\tan }^{-1}}\dfrac{3}{4}-{{\tan }^{-1}}\dfrac{17}{31}$
$={{\tan }^{-1}}\dfrac{3}{4}+{{\tan }^{-1}}\dfrac{3}{4}-{{\tan }^{-1}}\dfrac{17}{31}$
Now, we know $\dfrac{3}{4}\times \dfrac{3}{4}<1$ . So, if we use the formula ${{\tan }^{-1}}A+{{\tan }^{-1}}B={{\tan }^{-1}}\dfrac{A+B}{1-AB}$ , we get
${{\tan }^{-1}}\dfrac{\dfrac{3}{4}+\dfrac{3}{4}}{1-\dfrac{3\times 3}{4\times 4}}-{{\tan }^{-1}}\dfrac{17}{31}$
$={{\tan }^{-1}}\dfrac{\dfrac{3}{2}}{\dfrac{16-9}{16}}-{{\tan }^{-1}}\dfrac{17}{31}$
$={{\tan }^{-1}}\dfrac{24}{7}-{{\tan }^{-1}}\dfrac{17}{31}$
Now we know that ${{\tan }^{-1}}A-{{\tan }^{-1}}B={{\tan }^{-1}}\dfrac{A-B}{1+AB}$ .
${{\tan }^{-1}}\dfrac{24}{7}-{{\tan }^{-1}}\dfrac{17}{31}={{\tan }^{-1}}\left( \dfrac{\dfrac{24}{7}-\dfrac{17}{31}}{1+\dfrac{24\times 17}{7\times 31}} \right)$
Now further solving the right-hand side of the above equation, we get
$={{\tan }^{-1}}\left( \dfrac{\dfrac{24\times 31-7\times 17}{7\times 31}}{\dfrac{7\times 13-24\times 17}{7\times 31}} \right)$
$={{\tan }^{-1}}\left( \dfrac{744-119}{217+408} \right)$
$={{\tan }^{-1}}\left( \dfrac{625}{625} \right)$
$={{\tan }^{-1}}1$
We know that the value of ${{\tan }^{-1}}1$ is equal to $\dfrac{\pi }{4}$ , which is equal to the right-hand side of the equation that we are asked to prove. So, we can say that we have proved that $2{{\tan }^{-1}}\dfrac{3}{4}-{{\tan }^{-1}}\dfrac{17}{31}=\dfrac{\pi }{4}$ .
Note: While dealing with inverse trigonometric functions, it is preferred to know about the domains and ranges of the different inverse trigonometric functions. For example: the domain of ${{\sin }^{-1}}x$ is $[-1,1]$ and the range is $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$ . Also it is important to check whether the multiplication of A and B is less than one or not to use proper formula.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

